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Abstract 
Until now, computer vision and machine learning techniques barely contributed to the archaeological domain. The use 
of these techniques can support archaeologists in their assessment and classification of archaeological finds. The paper 
illustrates the use of computer vision techniques for archaeology with two examples: (1) a content-based image 
retrieval system for historical glass and (2) an automatic system for medieval coin classification. The content-based 
image retrieval system automatically finds artifact drawings in a reference collection that are most similar to a 
photograph or drawing of an excavated historical glass. The similarity measurements are based on the outer shape 
contours of the artifacts. The system can speed up the process of classifying historical glass, and make it more objective 
and controllable. The coin classification system will be trained on a collection of Dutch early-medieval coins. For this 
system, we present preliminary results on modern coin data. 
 
1 Introduction 
Developments in computer science and statistics have provided archaeologists with a wide range of tools. 
These tools include tools for GIS, 3D modeling, predictive modeling, visualization, simulations, remote 
sensing, resource management, etc. However, the archaeological domain lacks tools that support the 
archaeologist in one of his main tasks, viz. the classification of artifacts. Since classification of artifacts is 
usually performed by visual inspection, techniques from computer vision and machine learning can be 
applied in order to develop such tools. Computer vision is the field concerned with the development of 
techniques that allow computers to evaluate and analyze images or sequences of images (i.e., video). 
Important tasks in computer vision include image segmentation, object detection, and object classification. 
Overviews of current techniques for computer vision can be found in (Forsyth and Ponce 2003; Gonzalez 
and Woods 2002). Machine learning is the field that is concerned with the recognition of patterns in 
statistical data. When the statistical data is labeled (i.e. all classifications for the data are specified), the use 
of machine learning techniques allows for the automatic classification of unlabeled data. Overviews of 
techniques for machine learning can be found in (Duda, Hart, and Stork 2001; Mitchell 1997).  
The paper illustrates the contribution of computer vision and machine learning techniques to classification 
of artifacts with two examples: (1) a content-based image retrieval system for historical glass and (2) an 
automatic system for coin classification. These systems are being implemented within the RICH project, a 
project that aims at the application of image analysis techniques to archaeology. 
The outline of the remainder of the paper is as follows. In section 2, we give an overview of work that 
applies computer vision techniques to the archaeological domain. Section 3 presents the system for content-
based image retrieval of historical glass. In section 4, we present work on an automatic system for 
classification of coins. The performance of the two systems, as well as the contribution of such systems to 
archaeology is discussed in section 5. In section 6, we conclude that our work illustrates the potential of 
machine learning and image analysis techniques for the domain of archaeology. 
 
2 Related work 
Until now, the number of studies in which computer vision and machine learning techniques are applied in 
the archaeological domain is limited. This section provides a (non-exhaustive) concise of the work done 
until now. 
In (da Gama Leitão and Stolfi 2002), a system is presented for the automatic reassembly of two-
dimensional fragmented objects such as ceramic sherds. The system is tested on a small amount of 
artificially created sherds. Although the results presented in the paper are promising, it is not likely that the 



system is applicable to large scale fragment reconstruction problems such as the Forma Urbis Romae 
problem. Recently, Stanford University started a project aiming at solving the Forma Urbis Romae 
reconstruction problem using computer techniques (Koller et al. 2005). 
In (Kampel and Melero 2003), a system is presented that reconstructs a virtual 3D vessel using profile 
information of a ceramic fragment. Two different approaches are proposed: (1) an approach based on 
Hough-features and (2) an approach based on genetic algorithms. The Hough-based approach is capable of 
automatic classification of the fragment. Although the results look promising, no classification 
performances are presented for the system.  
A system that allows for automatic classification of ceramics profiles is presented in (Karasik et al. 2004). 
The system is based on analysis of the curvature function of the ceramics profile. Although no 
classification performances are reported, the authors show that the system captures increasing complexity 
of ceramics profiles over time. 
 
3 Content-based image retrieval for historical glass 
Currently, classification of historical glass artifacts is performed manually by an archaeological expert. 
Generally, the expert attempts to find already classified artifacts that are perceptually similar to the 
unclassified artifact. In order to effectively find such artifacts, usually, the expert searches through a 
reference collection. A reference collection is a collection of reference artifacts, which is usually published 
as a set of formalized descriptions together with line drawings of the artifacts. An important Dutch 
reference collection for historical glass is described in (Kottman 1999). Manual comparison of historical 
glass artifacts with artifacts from a reference collection is a time-consuming process. Additionally, the 
identification of artifacts in this way is a highly intuitive and uncontrollable process. 
In order to partially overcome these drawbacks, we propose the use of a content-based image retrieval 
system by the archaeological expert. Content-based image retrieval is the retrieval of images that are 
perceptually similar to a query image. In order to retrieve similar images, a content-based image retrieval 
system employs a similarity measure based on certain image features. 
We developed a content-based image retrieval system that compares photographs of artifacts with drawings 
from a reference collection. When an archaeologist finds a historical glass in the soil, he can photograph the 
artifact, and present the artifact photograph as a query to the system. Subsequently, a number of objects 
from the reference collection are presented that are perceptually similar to the photographed historical 
glass. The expert can now easily make a classification decision on the historical glass, by comparing the 
found artifact with the perceptually similar objects from the reference collection that are presented by the 
system. In this way, classification of historical glass by experts can be improved and speeded up.  
The value of a content-based image retrieval system for the classification of historical glass is highly 
determined by the way it finds images that are perceptually similar, i.e., by the choice of the similarity 
measure. This section briefly describes the similarity measure that is used in our system. Our choice of the 
similarity measure is based on the historical glass dataset that is described in (Kottman 1999). In section 
3.1, we give a brief description of the historical glass dataset. Section 3.2 describes the similarity measure 
that is used in our system. In section 3.3, the results and the contribution of the system to archaeology are 
discussed. 
 
3.1 Historical glass dataset 
The historical glass reference collection is described in (Kottman 1999). It consists of 314 glass artifacts1, 
which all date from the period 1400-1915. The artifacts are described by drawings and their corresponding 
classifications. Figure 1 shows an example of an artifact drawing from the reference collection. The left 
part of the drawing represents the profile of the artifact, whereas the right part of the drawing shows the 
surface of the artifact. The drawings in the reference collection are based on selected artifacts. We 
photographed the selected artifacts in a way that is commonly applied for the presentation of archaeological 
artifacts. An example of a photograph is shown in Figure 2. The artifact in Figure 2 corresponds to the 
artifact presented in Figure 1. The photographs allow for evaluation of the content-based image retrieval 
system.  
Usually, an artifact drawing looks different than an artifact photograph. The drawings in the reference 
collection are based on reconstructions of archaeologically complete objects by fitting sherds and 

                                                
1 The collection is shown on http://www.referentiecollectie.nl/rich/ 



fragments. Missing information is indicated by a dashed line. Furthermore, colour information and non-
relevant texture information is eliminated in the drawings.	
  The texture information that is present in the 
drawings is an abstract representation of the texture on the artifact. Therefore, the visual information in the 
drawings that is most accurate for use in our content-based image retrieval system is the information on the 
outer shape of the artifact. I.e., content-based image retrieval in historical glass reference collections relies 
on similarity measures based on outer shape features. 
 

 
Figure 1: Drawing of a historical glass artifact. 

 
3.2 Similarity measure 
Many similarity measures based on outer shape are proposed in literature. We selected and implemented 
five shape similarity measures: similarity measures based on (1) curvature scale spaces (Mokhtarian, 
Abbasi, and Kittler 1996), (2) shape contexts (Belongie, Malik, and Puzicha 2001; Mori, Belongie, and 
Malik 2005), (3) turning functions (Tanase and Veltkamp 2005), (4) Hausdorff distance (Huttenlocher, 
Klanderman, and Rucklidge 1993), and (5) moment invariants (Hu 1962). Preliminary experiments 
revealed similarity measures based on shape contexts to be best-performing. This is due to the coarse nature 
of shape contexts, which makes them more robust to distortions caused by 3D-rotations, broken artifacts, 
noise, etc. Therefore, we focus on the shape context similarity measure in this paper. 
The computation of shape context similarity measures consists of three steps: (1) the pre-processing of the 
image, (2) the computation of shape context descriptors, and (3) the computation of the similarity measure. 
First, a shape profile has to be computed from the artifact photograph. This is necessary in order to 
compute outer shape features of the artifact. The pre-processing process consists of five steps. First, a 
Canny edge detector (Canny 1986) is applied on the artifact photographs. Second, in order to connect 
unconnected edges, a morphological dilation operation (Serra 1982) on the resulting image is performed. 
Third, a NOT-operation and a bucket fill are performed on the resulting image, assuming that the upper-left 
pixel of the image is not part of the artifact. In this way, we obtain an image in which the background is 
black, and the artifact is white. However, edges caused by shadows or table edges still remain in the image. 
Therefore, a morphological erosion operator (Serra 1982) is applied fourth, in order to remove these edges. 
An example of the resulting shape profile is shown in Figure 3. Fifth, a Sobel edge detector is applied on 
the resulting image, in order to obtain the final shape representation. 



 

 
Figure 2: Photograph of historical glass artifact. 

 
Once the outer shape profile is extracted from the photograph, shape contexts are computed from the 
obtained shape contours. Shape contexts are global shape descriptors first introduced in (Belongie, Malik, 
and Puzicha 2001). In a shape context representation, a shape is represented by a number of points that is 
sampled from the boundary of the shape contour. The points are described as shape context descriptors. 
Shape context descriptors describe the distance and angle of a point to all other points in a discretized log-
polar space. By means of this description, a set of shape context descriptors (i.e., a shape context) contains 
global information about the shape. 

 

 
Figure 3: Shape profile of historical glass artifact. 

 
After the computation of the shape context descriptors, a similarity measure is computed. The similarity 
measure is based on the dissimilarity between two shape contexts. In order to compute the dissimilarity 
between two shapes, Belongie et al. first compute the Euclidean distance between all shape context 
descriptors in the two shapes. Subsequently, they apply a Hungarian matching algorithm on the distance 
matrix. In this matching algorithm, the optimal matching between the shape context descriptors of two 
shapes is computed. The costs of this matching provide a measure for the dissimilarity of the two shapes. 
The bending energy of the thin plate spline warping describing the warping between both shapes is added 
to the costs, in order to further enhance the shape matching (Belongie, Malik, and Puzicha 2001). 
Additionally, Belongie et al. add image appearance costs in order to further improve their results.  



However, we found this approach to be to time-consuming for application in a content-based image 
retrieval system. Therefore, we propose the use of a simple k-nearest neighbor matching algorithm for the 
matching of shape descriptors instead of the Hungarian matching algorithm. In order to be able to use a k-
nearest neighbor matching algorithm, the shape context descriptors should be ordered. Furthermore, the 
computation of the similarity measure should be invariant to changes in the starting point of the shape 
contour. Starting point invariance can be achieved by computing the distance between the first shape 
context and n shifted versions of the second shape context (where n is the number of shape context 
descriptors in the shape context). Subsequently, the minimum distance is set as the final similarity measure. 
This yields a computational complexity of O(n) (where n is the number of shape context descriptors), 
whereas the original Hungarian matching algorithm has a computational complexity of O(n3). In order to 
further reduce computation time, we eliminate the use of thin plate splines and image appearance costs. 
 
3.3 Results 
In order to evaluate the performance of our content-based image retrieval system, we presented the 
photographs as described in subsection 3.1 as queries to the system. Figure 4 shows a number of typical 
queries2. Although the results in many cases look promising, our system suffers from one major drawback. 
Glass artifacts are often distorted by missing parts. The missing parts of the glass affect its outer shape in a 
significant way. Therefore, our system does not perform well on severely damaged glass artifacts. A 
solution to this problem is the manual adjustment of the shape profile by the user. 

 

 
Figure 4: Typical results of a query. 

 
Although our system does not perform well on highly degraded artifacts, we still think it forms an 
important contribution to archaeology. Even when the retrieved artifacts are not perfect matches, the 
system provides an entry into the reference collection website, allowing the archaeologist to classify 
artifacts faster and with a lower risk of errors. In addition, our system can be used for automatic shape 
analysis of entire reference collections. By performing the shape analysis on the entire reference collection, 
it is possible to present perceptually similar artifacts for every artifact in the reference collection3. This can 
                                                
2 The system is available for testing from http://www.referentiecollectie.nl/rich/ 
3 This is done for the historical glass collection on http://www.referentiecollectie.nl/rich/ 



be beneficial to projects such as NRc (Lange 2004) and eRC, by providing a new way of navigation 
through reference collection websites. 
 
4 Automatic coin classification 
Coins are commonly found archaeological artifacts. For instance, the collection at the Dutch Money and 
Bank Museum contains over 200,000 historical coins. However, since the coins are usually stored in saves, 
these collections are generally not accessible to the public. Therefore, a great effort is done to provide 
access to the coins digitally, e.g. in NUMIS4. However, the current presentation of collections is not well 
suited for helping non-experts to classify coins. Classification of coins requires a great deal of expert 
knowledge. Therefore, a system that aids the classification of coins can be an important asset to medieval 
coin collections managers and users. 
In other work (van der Maaten and Postma 2006), we presented a number of features for automatic 
classification of coins. We briefly discuss these features and some preliminary results in subsection 4.1. 
Currently, we are working on the development of a similar system for early-medieval coins from the 
Merovingen-dynasty. An example of these coins is shown in Figure 5. 

 

 
Figure 5: Example of a coin. 

 
4.1 Modern coin classification 
Until now, work on automatic coin classification is limited. Some attempts for classification systems for 
modern coins can be found in (Adameck, Hossfeld, and Eich 2003; Davidsson 1996; Fukumi et al. 1992; 
Passeraub et al. 1997). Generally, these systems are limited by performance or require specific devices such 
as proximity sensors. Vision-based systems with high classification performances are presented in (Nölle et 
al. 2003; Huber et al. 2005). A drawback of the systems by Nölle et al. and by Huber et al. is that they 
highly rely on additional sensor data on coin area and thickness.  
In (van der Maaten and Postma 2006), we presented preliminary results for image features based on 
contour and texture information. Contour information is information contained in the stamp of the coin. We 
represent contour information from the coin by means of multi-scale edge-based statistical features. Edges 
are obtained by applying a Sobel edge-detection on the coin images. The best-performing edge-based 
statistical features measure the joint angle-distance distribution of edge pixels over the coin, and represent 
this information in a multi-scale histogram (van der Maaten and Boon 2006). Texture information is 
information on the texture of the coin. Since coins usually do not have a texture, texture features might 
seem uninteresting in coin classification. However, modern coins often contain very detailed pictures. 
Therefore, these pictures can be considered as the texture of the coin. Texture information can be 
represented using approaches based on the Gabor wavelet (Lee 1996) or the Daubechies D4 wavelet. For 
technical details we refer to (van der Maaten and Postma 2006; van der Maaten and Boon 2006), they are 
outside the scope of this paper. 
We trained our system on a set of modern European coins that were collected after the introduction of the 
euro. The dataset contains 692 different coin types with 2,270 different coin faces. Our system classifies 
approximately 78% of the coins in the test set correctly (van der Maaten and Boon 2006). Usually, 
misclassifications are due to very dirty coins or due to unknown coins. 
 
 

                                                
4 See http://83.149.77.24:8080/numis/ for more information 



5 Discussion 
In section 3 and 4, we presented two examples of image analysis systems that can be applied on 
archaeological data. The two systems illustrate the possibilities of computer vision and machine learning 
techniques. Application of these techniques in the archaeological domain has two major contributions to the 
field. First, it allows for more objective and more controllable classification of archaeological artifacts. 
Furthermore, it can speed up the classification process. By using a wireless internet connection, 
archaeologists can semi-automatically perform important classifications in the field. Hereby, use of 
computer vision and machine learning techniques can even influence excavation decisions. Second, the use 
of computer vision and machine learning techniques can give a broader public access to archaeological 
knowledge, both by providing automatic classification systems to non-experts, and by allowing for new 
presentation methods for on-line archaeological collections. In addition, computer vision and machine 
learning techniques allow archaeologists to develop new typologies or to evaluate old ones. For example, 
applying visualization techniques such as MDS on the shape analysis of the entire historical glass collection 
leads to similarity maps such as the one shown in Figure 6. By manually creating clusters in these maps, the 
archaeologist can easily create a new typology. This process can even be automated using techniques for 
unsupervised learning. 
Future work should focus on further development of the discussed systems. The main challenge here is to 
incorporate archaeological knowledge into already existing computer vision algorithms. Incorporation of 
archaeological knowledge can be obtained by cooperation with archaeological experts in the development 
process, or by the development of semi-automatic adaptive systems. Such systems employ a so-called 
‘human-in-the-loop’ approach in order to automatically learn archaeological knowledge over time. 

 
Figure 6: Historical glass similarity map. 



 
6 Conclusions 
The presented work illustrates the power of computer vision and machine learning techniques for 
archaeology with two examples. Although both systems are in a preliminary state, and a great deal of work 
has yet to be done, the advantages of the application of computer vision techniques in the archaeological 
domain have become clear. We have indicated various ways in which the techniques can improve 
archaeological processes. Additionally, we indicated directions on which further work should focus. 
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