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Abstract

The paper presents an extension of active appearance
models (AAMs) that is better capable of dealing with the
large variation in face appearance that is encountered in
large multi-person face data sets. Instead of the traditional
PCA-based texture model, our extended AAM employs a
mixture of probabilistic PCA to describe texture variation,
leading to a richer model. The resulting extended AAM can
be efficiently fitted to held-out test images using an adapted
version of the inverse compositional algorithm: the com-
putational complexity scales linearly with the number of
components in the texture mixture. The results of our ex-
periments on three face data sets illustrate the merits of our
extended AAM.

1. Introduction
Active appearance models (AAMs) form a powerful ap-

proach to important computer vision problems such as de-
formable shape segmentation and appearance modeling of
deformable objects [6, 8, 17]. AAMs do so by combin-
ing two separate models: (1) a model describing the shape
deformations of the objects and (2) a model describing
the object texture after shape normalization. As a result,
AAMs can represent the complex interactions between ob-
ject shape and object texture. Next to applications in face
modeling, AAMs have also been successfully applied to,
e.g., medical image analysis [1] and industrial vision prob-
lems [18]. Hitherto, studies on how to fit AAMs to images
can roughly be subdivided into two main approaches.

The first approach, which is sometimes referred to as the
discriminative approach, attempts to iteratively update the
parameters of the AAM by training an update model on a
data set of annotated images, in which the annotations are
randomly perturbed [27]. The update model is trained as
to learn a mapping from the feature space to the parame-
ter update space. In the discriminative approach, both lin-
ear techniques [7, 8, 13] and non-linear techniques [15, 22]
have been explored. The main advantage of discrimina-
tive approaches is that the fitting is relatively fast, because

the function from the feature space to the parameter update
space is fixed. However, the quality of the fits is hampered
by the fixed, heuristically chosen, often linear parameter up-
date scheme used in the discriminative approach.

The second approach, which is sometimes referred to as
the generative approach, considers the fitting of AAMs as
an image alignment problem that can be solved by mini-
mizing the squared error between the observed image and
the model fit [3, 17, 20], thereby assuming a Gaussian noise
model. The generative approach does not require the heuris-
tics of the discriminative approach. Instead, AAM fitting in
the generative approach amounts to gradient-based maxi-
mization of a likelihood function using optimization tech-
niques that are well understood. A disadvantage of the gen-
erative approach is that these gradient-based approaches are
often relatively slow. A notable exception is a variant of the
inverse compositional algorithm [2] that projects out texture
variation [17]. The fitting scheme presented in [17] gener-
ally gives good results at low computational costs, however,
its performance is often hampered by the presence of large
texture variations in the data [10, 20].

To address this problem of the project-out inverse com-
positional algorithm, we present an extension of the stan-
dard AAM that is better at dealing with large texture varia-
tions in the data, but that can still be fitted efficiently. The
extension entails the use of a mixture model to describe ob-
ject texture variation. The results of experiments on three
multi-person face data sets show that our extended model
outperforms the standard AAM thanks to its richer texture
model (both in terms of shape fit as in terms of texture fit).

The outline of the remainder of the paper is as follows. In
section 2, we present a review of AAMs, and we discuss the
main limitations of the standard model. Section 3 presents
our extension of the AAM that aims to increase the model’s
ability to deal with large texture variations in the image data.
In section 4, we describe how the extended model can be
fitted efficiently to test images. Section 5 presents experi-
ments with the extended AAMs on three multi-person face
data sets. In section 6, we discuss the results of the ex-
periments. Section 7 presents our conclusions, as well as
directions for future work.
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2. Active appearance models
AAMs simultaneously describe the shape and texture

variation of objects [6, 17]. In the remainder of this paper,
we assume that the objects are faces of various individu-
als exhibiting a range of facial expressions. In this case,
AAMs are trained on a collection of face images, in which
facial feature points are annotated. The feature points are
required to be relatively dense, in such a way that, e.g., a
Delaunay triangulation constructed on the feature point an-
notations approximately captures the geometry of the face.
The feature point annotations are normalized for translation,
rotation, and scale differences using Procrustes alignment,
and subsequently, a model for the feature point locations
is learned using PCA. The resulting shape model describes
the variation in feature point locations across the faces in
the training data. In addition, a base shape mesh ν is con-
structed, typically, by computing the mean of the normal-
ized feature point annotations.

The base shape mesh is used to normalize the face im-
ages in the data set. Every image in the training set is
warped onto the base shape mesh ν (e.g., using a piece-
wise linear or thin-plate spline warp) using the feature point
annotations as control points. This results in a collection of
aligned facial texture images that are all defined in the same
coordinate frame. From this collection of texture images, a
texture model is learned, again, using PCA.

In the instantiation of the AAM, the shape model and
texture model are combined in three steps. First, the shape
model is used to generate a face shape, i.e., to lay out the
facial feature points. Second, the texture model is used to
generate a facial texture image. Recall that this texture im-
age is defined in the coordinate frame of the base mesh ν.
Third, the texture image is warped onto the face shape using
the constructed feature points as control points to construct
the final face image.

Denoting the warp of image x that maps the control
points s to the target points ν by Ws→ν(x), the generative
model of the standard AAM can be written as follows:

– Sample shape parameters p ∼ N (p|0, I).
– Sample shape points s ∼ N (s|ν + Sp, τ2I).
– Sample texture parameters λ ∼ N (λ|0, I).
– Sample texture image x ∼ N (x|µ + Aλ, σ2I).
– Generate face image i = Ws→ν(x).

In the above, S represent the shape basis, A represents
the texture basis, ν and µ represent the corresponding shape
and texture means, τ and σ represent the corresponding
noise variances, and I represents the identity matrix. The
marginal distribution over the texture x is a Gaussian with a
low-rank covariance matrix [25], viz. by

p(x|µ,A, σ) = N (x|µ,AAT + σ2I).

We argue that this marginal distribution is too simple to
appropriately model the facial texture variations in large
multi-person face data sets, in particular, when these faces
exhibit a range of different characteristics or facial expres-
sions. A low-rank Gaussian in pixel space is unlikely
to have sufficient modeling power to capture the complex
non-linear manifold on (or near) which facial textures lie.
Also, it is very unlikely that the texture distribution of real-
world faces is unimodal. For instance, faces of individu-
als with different ethnicities may well form different modes
in the texture distribution. As another example, it is likely
that persons with and persons without glasses, or persons
with and without beards form separate modes in the texture
space. In fact, even gender differences may lead to different
modes in the texture space, though one may argue there ex-
ists a smooth manifold transition from male faces to female
faces (in which case, the data likely constitutes a complex
non-linear manifold). As a result, facial texture cannot be
appropriately modeled by a single low-rank Gaussian.

3. Modeling texture variation
To address the limitations of the texture model in stan-

dard AAMs, we propose to use a mixture of probabilis-
tic principal component analyzers [24] instead of standard
PCA to model the variation in the facial textures. The mix-
ture of PCAs has been shown to be capable of modeling the
structure of complex non-linear manifolds [4, 21], and can
be trained relatively easy using an EM-algorithm. More-
over, the use of a mixture of PCA-based texture model still
allows for the use the inverse compositional algorithm dur-
ing inference (i.e., fitting), because the mixture components
are Gaussian models.

The probabilistic PCA mixture model entails a linear su-
perposition of K components, in which each component is
a separate probabilistic PCA model. A mixture of prob-
abilistic PCA model with K mixture components is gov-
erned by parameters θ = {π,µ,A,σ}, where we use the
notation π = {π1, . . . , πK} for the weights of the mix-
ture components, µ = {µ1, . . . ,µK} for the component
means, A = {A1, . . . ,AK} for the component bases, and
σ = {σ1, . . . , σK} for the component noise terms. Using
the PCA mixture to model texture variation leads to an ex-
tended AAM, the generative model of which is illustrated
in Figure 1.

Using a 1-of-K representation for the latent assignment
variable z, the conditional distributions that correspond to
the texture part of the model can be denoted by

p(z|π) = Discrete(π),

p(λk) = N (λk|0, I),

p(x|z,λ,µ,A,σ) =

K∏
k=1

N (x|µk + Akλk, σ
2
kI)zk .
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Figure 1. Generative model of the extended AAM.

The marginal distribution over the texture space can be
obtained by marginalizing over z and over the latent spaces
λk. The resulting marginal is given by

p(x|θ) =

K∑
k=1

πkN (x|µk,AkAT
k + σ2

kI).

The mixture of PCAs can thus be thought of as a mixture
of Gaussian model, in which the covariance matrices of the
Gaussians are constrained to have a low (but not necessarily
equal1) rank. As a result, the mixture of PCAs can represent
more complicated distributions than the PCA-model used
in the standard AAM. One can imagine that in a mixture
of two PCAs, one component may be used to model the
texture of faces with glasses, whereas the other component
models the texture of faces without glasses. In this example,
the weights of the mixture components would correspond to
the ratio between faces with and faces without glasses in the
image data. The mixture components may also be used to
model different parts of the same complex, non-linear face
manifold.

The parameters θ of the texture model can be learned
from a collection of training data D = {in, sn}, (n ∈
{1, . . . , N}), by warping all face images in to the base
shape via xn = Wsn→ν(in), and using the EM-algorithm
described in [24] on the resulting data set {xn}.

4. Inference
The key inferential problem in AAMs is, given an unseen

test image iN+1, to determine parameters p∗, λ∗, and z∗
that are optimal in terms of likelihood2, i.e., to find

{p∗,λ∗, z∗} = arg max
p,λ,z

log p(iN+1|p,λ, z,θ, ζ),

1We would like to emphasize that the probabilistic PCA mixture model
constructs K different latent spaces λk , which do not even necessarily
have the same dimensionality.

2We could also perform maximum a posteriori estimation [20], but for
the purpose of our experiments, maximum likelihood estimation suffices.

where we used the notation ζ for the parameters of the shape
model, ζ = {ν,S, τ}. First, we note that the maximization
over z is tractable as the number of possible configurations
of z is equal to K. Hence, we can maximize the likeli-
hood with respect to z by selecting the maximum value of
K separate likelihood maximizations over {p,λk} (for all
k ∈ {1, . . . ,K}) in which we assume that zk = 1.

Analytically computing the maximum likelihood esti-
mate {p∗,λ∗k} for a given z is intractable due to the cou-
pling between s and x. Following earlier studies [17, 20],
we circumvent this problem by performing the likelihood
maximization with respect to p first, whilst we assume that
λk is set to the zero vector. Once an optimal p is found, the
value of p is fixed and the maximization with respect to λk

is performed. We discuss the maximizations with respect to
p and λk separately.

4.1. Finding the shape parameters

Because the mapping between the texture x and the ap-
pearance i is a deterministic one, we can evaluate the likeli-
hood either in the texture space or in the appearance space.
The noise model is easier to evaluate in the texture space, so
we opt to evaluate the likelihood there. Taking into account
that λk = 0, we can thus rewrite the maximum likelihood
estimate as

p∗ = arg max
p

log p(iN+1|p,λk = 0, zk = 1,µk,Ak, σk, ζ)

= arg max
p

logN (Ws→ν(iN+1; p)|µk, σ
2
kI)

= arg min
p

∑
(Ws→ν(iN+1; p)−Wν→t(µk; 0))

2
,

where t is the mean shape that corresponds to the shape pa-
rameter vector p = 0 (i.e., t is equal to the base shape ν),
and the summation is over all pixels in the texture space.
Note that the factor (σkI)−1 in the evaluation of the Gaus-
sian falls out, because the noise model is isotropic.

The likelihood maximization with respect to p can be
performed using a standard gradient descent optimizer, but
this is typically very slow. Instead, we opt to use the in-
verse compositional algorithm [2], which is an adaptation of
the standard Lucas-Kanade algorithm that allows for most
terms in the parameter update to be precomputed. The aim
of the inverse compositional algorithm is to find a parame-
ter update ∆p∗ that increases the likelihood by performing
the following minimization

min
∆p

∑
(Ws→ν(iN+1; p)−Wν→t(µk; ∆p))

2
.

This minimization can be performed by evaluating the first-
order Taylor series around p = 0 of the likelihood at ∆p,
leading to the approximation

min
∆p

∑(
Ws→ν(iN+1; p)− µk −∇µk

∂W

∂p
∆p
)2

.



Herein,∇µk represents the image gradient of the mean tex-
ture image µk, ∂W

∂p is the Jacobian of the warp W around
0, and the summation is over the pixels in the texture space.
The above minimization can be performed by setting the
gradient of the first-order Taylor approximation to zero,
which gives the solution

∆p∗ = H−1
∑[

∇µk

∂W

∂p

]T
[Ws→ν(iN+1; p)− µk] ,

where H =
∑[
∇µk

∂W
∂p

]T [
∇µk

∂W
∂p

]
represents the

Gauss-Newton approximation to the Hessian, and again, the
summation is over the pixels in the texture space.

Due to the way the update objective is defined, the three
main terms in the parameter update ∆p∗ can be precom-
puted. First, the warp Jacobian ∂W

∂p can be precomputed
because it is only evaluated at p = 0. Second, the image
derivative of the mean texture ∇µk can be precomputed
because the mean textures µk are fixed. Third, the inverse
Hessian H−1 can also be precomputed, because it only con-
tains precomputed terms.

The parameter update ∆p∗ is not the final update that is
applied to the shape parameters, as it is an inverse parame-
ter update: it warps µk in the direction of Ws→ν(iN+1; p)
instead of warping Ws→ν(iN+1; p) in the direction of µk

(hence the name inverse compositional algorithm). The
computation of the final parameter update from ∆p∗ is
straightforward, and is described in detail in [17].

4.2. Finding the texture parameters

Given the inferred shape parameters p∗, the maximum
likelihood estimate of the texture parameters λk can be
found in closed form. The expression for the maximum
likelihood estimate λ∗k can be rewritten in a similar way as
for the shape parameters, to find that λ∗k can be obtained by
performing the minimization

λ∗k = arg min
λk

∑
(Ws→ν(iN+1; p∗)− µk − Akλk)

2
,

where s is the mean shape that corresponds to the shape
parameters p∗. The closed-form solution for the texture pa-
rameters is

λ∗k = AT
k (Ws→ν(iN+1; p∗)− µk) .

4.3. Improving approximate inference

Clearly, the inference procedure described in the previ-
ous two subsections is an approximate method. In particu-
lar, it does not take into account the variation in the texture
of faces when it tries to find a maximum likelihood esti-
mate for the shape parameters p, but instead, it minimizes
the squared error between the image iN+1 warped onto the

base shape ν and the texture mean µk. One may improve
the situation by performing an alternating optimization3 of
p and λk. The main disadvantage of such an alternating
optimization scheme is that it leads to significant additional
computational load, as each update of the texture parame-
ters λk is relatively expensive.

Instead, we opt to use the faster (but less accurate)
‘project-out’ method [17]. This method uses the fact that
the likelihood maximization w.r.t. to the shape parameters
can be decomposed into two parts: one that operates in the
span of Ak and another that operates in the space orthogonal
to the span of Ak. The minimal squared error in the first part
is always equal to 0, as a result of which the optimal value
of p can be found by only taking into account the second
part. The texture variation in the span of Ak can thus be
projected out4. The project-out method may be hampered
by large texture variations in the test image [10, 20], but our
use of the mixture of PCA-based texture model has already
addressed this problem.

5. Experiments
In order to evaluate the performance of our extended

AAM, we performed experiments on three large multi-
person data sets of annotated face images. The setup of
these experiments is described in subsection 5.1. In subsec-
tion 5.2, we present the results of the experiments on the
three data sets.

5.1. Experimental setup

We performed experiments with our extended AAMs on
three annotated face data sets: (1) an annotated subset of
the AR face data set [16], (2) the IMM data set [19], and
(3) the Cohn-Kanade data set [14]. The annotated subset
of the AR data set that we used contains 504 color images
of 126 individuals with various facial expressions of size
576 × 768 pixels [16]. The images are annotated with 22
facial feature points. The IMM data set contains grayscale
and color images (all of which were converted to grayscale
in our experiments) of 40 individuals, annotated by 58 fea-
ture points [19]. In total, the data set comprises 240 images
of size 640× 480 pixels with out-of-plane face rotations of
up to 30 degrees. The Cohn-Kanade data set contains 496
gray-scale movies, showing 128 individuals producing var-
ious facial expressions [14]. The total number of frames in
the Cohn-Kanade data set is 8, 795 frames, all of which are
annotated with 59 facial feature points.

On all three data sets, we assess the performance of the
AAMs by computing mean point-to-point errors and mean

3If the algorithm alternates after every parameter update, the simulta-
neous algorithm of [10] is obtained.

4The project-out method requires the basesAk to be orthonormal. We
achieve this by running Gram-Schmidt orthonormalization on the bases Ak

after the training of the mixture of probabilistic PCA.



squared appearance errors from model fits on held-out test
images. The point-to-point error is the mean Euclidean
distance (in pixels) between the point annotations that re-
sulted from the inference and the ground truth point anno-
tations. The squared appearance error is the squared error
between the shape-normalized image and the inferred tex-
ture (note that this measure is proportional to the likelihood
that AAMs aim to maximize).

In all experiments on the three face data sets, we used 10-
fold cross-validation to measure the performances, i.e., we
randomly selected 90% of face images to train the AAMs,
and we used the remaining 10% of the images to determine
the generalization performance of the trained models (and
we repeated this process 10 times). As we randomly split
the face data, the test set may contain images of individuals
that were not in the training set. In all experiments, we used
AAMs with the settings described below.

As shape model, we use a standard PCA model with 10
dimensions [6]. We manually add 4 components to the lin-
ear basis that can capture differences in scale, translation,
and rotation of the face (see [17] for details). In the shape
model, 4 shape parameters thus represent the size, loca-
tion, and orientation of the face, whereas the remaining 10
shape parameters represent the shape variation. Note that
the shape basis is orthogonal by construction, because the
shapes were normalized using Procrustes alignment before
the PCA model was trained.

As texture model, we use the mixture of probabilistic
PCA model with 30-dimensional latent spaces λk and K
mixture components. The mixture of probabilistic PCA is
trained by running the EM-algorithm for 100 iterations. For
computational reasons, we first perform PCA to reduce the
dimensionality of the face textures to 300 before training the
mixture of probabilistic PCA model. In order to account for
camera gain and offset, we manually add the mean texture
image and an all-white image to the texture bases, and or-
thonormalize. We use color information in the experiments
on the AR data set (the other two data sets only provide
gray-scale images).

In all experiments, we perform inference by running the
likelihood maximization for 30 iterations. In our inference
procedure, the initialization of the shape parameters p is
performed by running the facial feature point detector de-
veloped in [9]. The detector combines local appearance in-
formation with a top-down model in order to find the cor-
ners of the eyes, nose, and mouth in the detected face. Given
the location of these facial feature points, the initial val-
ues of the translation, scale, and rotation parameters can be
computed in closed form. In our implementation, the warp-
ing function W is implemented by a piecewise linear warp.
We provide Matlab code to reproduce the results of our ex-
periments on http://www.anonymized.com.

5.2. Results

Below, we present the results of our experiments on the
three face data sets in three separate subsections.

5.2.1 AR data set

Table 1 gives an overview of mean point-to-point errors and
mean per-pixel squared appearance errors of fits measured
on the AR data set5. Both errors were computed using 10-
fold cross validation. The best performance in terms of
point-to-point error and in terms of squared appearance er-
ror is typeset in boldface. In addition, the table presents
the mean time required to perform full inference on a single
face image (measured in a simple Matlab-implementation).
The reported computation times include the time required
for face detection and parameter initialization. Please note
that the setting K = 1 corresponds to fitting a standard
PCA-based AAM using the project-out inverse composi-
tional algorithm, as described in [17].

K Pt.-to-pt. err. Appear. err. Time per im.
1 6.30 2.13× 10−2 1.89 sec.
2 6.25 1.60× 10−2 2.90 sec.
3 5.95 1.34× 10−2 3.95 sec.
4 5.46 1.23× 10−2 4.83 sec.
5 5.75 1.20× 10−2 6.04 sec.

Table 1. Point-to-point and per-pixel squared appearance errors on
the AR data set using various settings of K.

The results presented in Table 1 show that using a mix-
ture of PCA to model texture variation leads to better re-
sults when fitting AAMs on new faces, both in terms of the
shape fit as in terms of the appearance fit. In particular,
using a mixture appearance model with 4 mixture compo-
nents leads to an improvement of more than 10% in terms of
the mean point-to-point error, and an improvement of more
than 40% in terms of the mean squared appearance error.

In Figure 2, we present a plot that shows the cumulative
appearance error distribution for the model with K = 1 and
the model with K = 5. To construct this plot, we averaged
the test results on the AR data set over all 10 folds. The plot
shows that using a mixture model as appearance model has
a significant positive effect on the expected squared appear-
ance error of a fit.

Some examples of shape and appearance fits on the AR
data set (obtained using the model with K = 2) are pre-
sented in Figure 3. The visualizations reveal that our ex-
tended AAMs pick up on quite a lot of facial features, such
as the presence of (minor) facial hair, color of eyes and lips,
position of the mouth, etc. Admittedly, the generated faces

5In the experiments on the AR data set, we did not encounter any im-
ages for which the inference procedure diverged.

http://www.anonymized.com
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Figure 2. Cumulative distribution of appearance errors on the AR
data set (averaged over 10 folds).

are slightly blurred compared to their original counterparts.
This blurring is the result of (1) small errors in the feature
point locations, leading to, e.g., blurry glasses, (2) the fact
that the model was trained on images of more than 100 dif-
ferent individuals with a variety of facial expressions, and
(3) the fact that the texture is governed by only 30 parame-
ters.

5.2.2 IMM data set

In Table 2, we present the results of our experiments on
the IMM data set. As for the AR data set, we report mean
point-to-point and per-pixel squared appearance errors mea-
sured using 10-fold cross-validation. We did not encounter
images on which the inference procedure diverged in our
experiments on the IMM data set.

The results show an improvement of approximately 20%
in terms of appearance error for the AAM with K = 5.
In terms of point-to-point errors, the model with K = 2
performs best, although the differences between the various
models are very small. Most likely, this is due to one of the
following two reasons: (1) the number of different individu-
als that are depicted in the IMM data set is relatively small,
giving the mixture model a limited advantage, and (2) the
results may be influenced by a ceiling effect that is due to
small errors in the manual annotations.

K Pt.-to-pt. err. Appear. err. Time per im.
1 6.43 9.22× 10−3 1.21 sec.
2 6.37 8.57× 10−3 1.55 sec.
3 6.66 8.17× 10−3 1.87 sec.
4 6.58 7.90× 10−3 2.22 sec.
5 6.55 7.72× 10−3 2.55 sec.

Table 2. Point-to-point and per-pixel squared appearance errors on
the IMM data set using various settings of K.

5.2.3 Cohn-Kanade data set

In Table 3, we present the results of our experiments on the
Cohn-Kanade data set. The results are presented in the same
way as the results on the AR and IMM data sets, but as the
inference procedure sometimes did not converge on images
in the Cohn-Kanade data set, we also present the relative
number of times that the inference diverged.

K Diverg. P2P err. Appear. err. Time per im.
1 0.29% 5.02 0.33× 10−1 0.56 sec.
2 0.23% 4.69 0.33× 10−1 1.09 sec.
3 0.20% 5.51 0.33× 10−1 1.63 sec.
4 0.18% 4.99 0.33× 10−1 2.18 sec.
5 0.17% 5.20 0.33× 10−1 2.70 sec.

Table 3. Point-to-point and (squared) appearance errors on the
Cohn-Kanade data set using various settings of K.

The results reveal that using the extended AAM reduces
the number of times that the inference diverges: the model
with K = 1 diverges approximately 70% more often than
the model with K = 5. In terms of the mean appearance
error, using a model with K > 1 does not appear to lead to
a better performance, but the reader should note that this re-
sult is biased: the model with K = 5 converges on more of
the images, so the reported appearance error for the K = 5
model is an average over more images than the reported ap-
pearance error for the K = 1 model. As the images on
which the K = 1 model diverges, but the K = 5 model
converges, are typically ‘difficult’ test images, the average
appearance error for the K = 5 model is negatively influ-
enced by the inclusion of these images. The same holds for
the mean point-to-point error. Despite the bias in the er-
ror estimates, the point-to-point error is the lowest for the
model with K = 2.

6. Discussion

From the results presented in the previous section, we
observe that our extended AAMs often produce better re-
sults, for instance, in terms of the mean squared error of the
appearance fit (which is the criterion that AAMs aim to min-
imize). Although these improved results come at additional
computational costs, the computational costs only grow lin-
early in the number of mixture components K. Moreover,
parallelizing the inference procedure described in section 4
is straightforward: the optimization for each mixture com-
ponent can be performed on a separate processor. Moreover,
one could imagine an hierarchical approach that first per-
forms rapid fitting using a simple PCA-based texture model,
and subsequently, refines the fit using the mixture compo-
nents in the extended AAM. Such an approach may exploit
the learned mixing proportions to determine the ordering of



(a) Shape fit face 1. (b) Shape fit face 2. (c) Shape fit face 3.

(d) Appearance fit face 1. (e) Appearance fit face 2. (f) Appearance fit face 3.

Figure 3. Examples of shape fits (top row) and appearance fits (bottom row) on the AR data set by an extended AAM with K = 2, trained
on images of 126 different individuals (using 10-dimensional shape bases and 30-dimensional texture bases).

the mixture components, as these proportions indicate the
probability that a mixture component leads to the best fit.

We showed that, apart from sometimes leading to bet-
ter feature point localization, our extended model achieves
lower appearance errors on the AR and the IMM data sets.
The appearance error reduction of our extended models is
particularly interesting for face synthesis tasks such as ex-
pression cloning [23]. Currently, face synthesis is only per-
formed with AAMs that are trained on image of a single
individual, but our extended model may pave the way for
the construction of a single AAM that can synthesize faces
from lots of different individuals.

Like the standard formulation of AAMs, our extended
AAMs implement the idea of selecting texture subspaces
based on an objective that tries to maximizes the data vari-
ance in these subspaces. However, we note that for tasks
such as facial expression recognition or face identification
based on using the inferred AAM parameters as features,
these subspaces are likely to be suboptimal. In many data
sets, the main sources of variance are sources such as illu-
mination changes, under which we would like such features
to be invariant. In contrast, minor components may capture
information that is essential to expression or identity, such
as the presence of small wrinkles or speckles. Hence, we
surmise the value of AAMs in facial expression or identity
recognition may be increased by adding minor components
to the texture bases, or by learning which components to use
in the texture bases [5].

A remaining question is whether it would be beneficial
to implement the shape model using a mixture model as
well. Presumably, the shape variation distribution is not a
multimodal distribution, but it forms a smooth non-linear
manifold. The mixture of PCA model has previously been
successfully applied to such non-linear manifolds [4, 21].
It thus seems likely that using a mixture model to describe
shape variation may be beneficial, in particular, when out-
of-plane rotations, occlusions, or extreme facial expressions
are present in the face data [11]. However, using mixture
models to describe both shape and texture variations does
lead to a significant additiona computational burden.

7. Conclusions

In this paper, we have presented an extension of the stan-
dard AAM that uses a mixture model to capture the large
variations in facial appearances in large multi-person data
sets. The results of our experiments on three multi-person
face data sets revealed that this extension leads to perfor-
mance improvements, in particular, in terms of the mean
squared error of the appearance fits, and that the computa-
tional burden of our extension is relatively small. We men-
tion four potential directions for future work.

As a first direction for future work, we aim to include
priors over the shape parameters p and texture parameters
λ in the inference procedure, i.e., to perform maximum
a posteriori estimation to prevent the optimization proce-



dure from diverging [20]. Second, we intend to extend our
model to simultaneously fit a 2D and a 3D AAM to obtain
better performance under the presence of out-of-plane rota-
tions [12, 26]. Third, we aim to investigate whether the use
of minor components in the texture bases [5] can improve
the value of AAMs in, e.g., identity recognition. Fourth,
we intend to investigate discriminative fitting schemes to
fit the extended AAM. Hitherto, we did not address dis-
criminative fitting schemes, because in this study, we are
mainly interested in comparing models, not in comparing
fitting schemes.
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