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Abstract

A cornucopia of dimensionality reduction techniques have
emerged over the past decade, leaving data analysts with a
wide variety of choices for reducing their data. Means of eval-
uating and comparing low-dimensional embeddings useful for
visualization, however, are very limited. When proposing a
new technique it is common to simply show rival embeddings
side-by-side and let human judgment determine which embed-
ding is superior. This study investigates whether such human
embedding evaluations are reliable, i.e., whether humans tend
to agree on the quality of an embedding. We also investigate
what types of embedding structures humans appreciate a pri-
ori. Our results reveal that, although experts are reasonably
consistent in their evaluation of embeddings, novices gener-
ally disagree on the quality of an embedding. We discuss the
impact of this result on the way dimensionality reduction re-
searchers should present their results, and on applicability of
dimensionality reduction outside of machine learning.

Keywords: dimensionality reduction; unsupervised machine
learning; psychophysics

Introduction

There is an evaluative vacuum in the dimensionality reduc-
tion literature. In many other unsupervised machine learn-
ing fields, such as density modeling, evaluation may be per-
formed by measuring likelihoods of held-out test data. Al-
ternatively, in domains such as topic modeling, human com-
putation (Ahn, Maurer, McMillen, Abraham, & Blum, 2008)
resources such as Amazon’s Mechanical Turk may be em-
ployed to exploit the fact that humans are phenoms in evaluat-
ing semantic structure (Chang, Boyd-Graber, Gerrish, Wang,
& Blei, 2009). Human evaluations have also been used to
assess image segmentation techniques (Martin, Fowlkes, Tal,
& Malik, 2001). The field of dimensionality reduction, how-
ever, lacks a standard evaluation measure (Venna, Peltonen,
Nybo, Aidos, & Kaski, 2010), and is not as obvious a target
for human intuition. Two or three dimensional embeddings
can be visualized as scatter plots, but on what intuitive basis
can we judge a 200 to 2-dimensional reduction to be good? In
addition, Gestalt effects or simple rotations may bias human
evaluations of scatter plots. Nevertheless, with no broadly
agreed upon embedding quality measure (though a few have
been proposed, see below), human judgment is often explic-
itly and implicitly solicited in the literature. The most com-
mon form of this solicitation consists of placing a scatter plot
of the preferred embedding next to those of rival embeddings
and inviting the reader to conclude that the preferred embed-
ding is superior (e.g., (Maaten & Hinton, 2008)). If one is
interested in applying a dimensionality reduction algorithm
to visualize a dataset, is this a valid way to select from the

wide range of techniques?1 To answer this question, we need
to evaluate whether humans are good at evaluating embed-
dings. As there is no external authority we can appeal to, this
is a daunting task. However, it is relatively easy to find out
whether human data analysts are at least consistent in their
evaluations, which is the first aim of this study. Consistency,
across individuals and across a wide range of inputs, is a rea-
sonable prerequisite for evaluation.

Beyond investigating whether human data analysts are con-
sistent when they evaluate embeddings, the second aim of this
study is to investigate what humans are doing when they eval-
uate embeddings. Such information could be useful for deter-
mining whether humans are appropriate for an evaluation task
with a known structure (e.g. if they naturally prefer embed-
ding characteristics appropriate to the structure), or for devel-
oping techniques that are tailored towards producing results
that humans will find helpful (e.g. algorithms that selectively
emphasize informative data structure). We can to some extent
infer human strategies from the algorithms humans prefer, but
we can also investigate those strategies by correlating embed-
ding characteristics with human evaluations.

Motivated by the two aims described above, we solicit em-
bedding quality judgments from both novice and expert sub-
jects in an effort to determine whether they are consistent in
their ratings, and which embedding characteristics they find
appealing. For the novice subjects, we manipulate dataset
knowledge—half read a description and see samples from
each dataset, and half do not. We hypothesize that provid-
ing dataset information will increase consistency, as it should
if the evaluative process is principled. The study consists of
two experiments. The first presents subjects with a selection
of embeddings derived from nine distinct dimensionality re-
duction algorithms; the second uses embeddings from a sin-
gle algorithm with several different parameter settings for a
more controlled comparison between “clustered” and “grad-
ual” embeddings.

Dimensionality reduction techniques
Dimensionality reduction techniques can be subdivided into
several categories: linear or non-linear, convex or non-
convex, parametric or non-parametric, etc. (Lee & Verley-
sen, 2007). Whilst many new techniques have been proposed
over the last decade, data analysts still often resort to linear,
convex, parametric techniques such as PCA to visualize their

1Moreover, one should note that dimensionality reduction com-
prises only a small part of the “visualization zoo” (Heer, Bostock, &
Ogievetsky, 2010).
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data. Non-linear, convex, non-parametric manifold learn-
ers such as Isomap (Tenenbaum, Silva, & Langford, 2000),
LLE (Roweis & Saul, 2000), and MVU (Weinberger, Sha,
Zhu, & Saul, 2007) are also frequently used for visualiza-
tion purposes (Jain & Saul, 2004; Lewis, Hull, Weinberger,
& Saul, 2008; Mahecha, Martı́nez, Lischeid, & Beck, 2007),
even though it is unclear whether these techniques produce
superior results (Maaten & Hinton, 2008).

As described in the introduction, one of the key prob-
lems of dimensionality reduction is that it lacks a widely
agreed upon evaluation measure (Venna et al., 2010). In
fact, it is very unlikely that there will ever be such an eval-
uation measure, as it would imply the existence of a free
lunch (Wolpert, 1996): the “optimal” dimensionality reduc-
tion technique would be the technique that optimizes the mea-
sure. Also, there is a lot of debate within the field on what a
good objective for dimensionality reduction is: for instance,
a latent variable model approach to dimensionality reduction
suggests one should focus on preserving global data struc-
ture (Lawrence, 2005), whereas a manifold learning view-
point deems preservation of local data structure more impor-
tant (Roweis & Saul, 2000). The lack of an evaluation mea-
sure and the ongoing debate within the field motivate the use
of a more anthropocentric approach.

In our study, we investigate nine dimensionality reduction
techniques, selected for their importance in the literature: (1)
PCA, (2) projection pursuit, (3) random projection, (4) Sam-
mon mapping, (5) Isomap, (6) MVU, (7) LLE, (8) Laplacian
Eigenmaps, and (9) t-SNE. PCA and projection pursuit find
a subspace of the original data space that has some desired
characteristic. For PCA, this subspace is the one that maxi-
mizes the variance of the projected data. For projection pur-
suit (Friedman & Tukey, 1974), the subspace maximizes the
non-Gaussianity of the projected data. Random projections
are linear mappings that mostly preserve pairwise distances in
the data due to the Johnson-Lindenstrauss lemma (Bingham
& Mannila, 2001). Sammon mapping constructs an em-
bedding that minimizes a weighted sum of squared pair-
wise distance errors, where distances are weighted in in-
verse proportion to their magnitude (Sammon, 1969). Isomap
constructs an embedding by performing classical scaling on
a geodesic distance matrix that is obtained by running a
shortest-path algorithm on the nearest neighbor graph of the
data (Tenenbaum et al., 2000). MVU learns an embedding
that maximizes data variance, while preserving the pairwise
distances between each data point and its k nearest neighbors,
by solving a semidefinite program (Weinberger et al., 2007).
LLE constructs an embedding that preserves local data struc-
ture by minimizing a sum of squared errors between each map
point and its reconstruction from its k nearest neighbors in
the original data (Roweis & Saul, 2000). Laplacian Eigen-
maps try to minimize the squared Euclidean distances be-
tween each points corresponding to its k nearest neighbors in
the original data, while enforcing a covariance constraint on
the solution (Belkin & Niyogi, 2002). t-SNE embeds points

by minimizing the divergence between two distributions over
pairs of points, in which the probability of picking a pair of
points decreases with their pairwise distance (Maaten & Hin-
ton, 2008).

Experimental setup
We perform two experiments with our human subjects. The
first experiment uses stimuli generated from the dimen-
sionality reduction algorithms described above to determine
whether humans are consistent in their evaluations when the
embeddings are fairly distinct (the first aim of the study). The
second experiment uses stimuli that are all generated by t-
SNE, but with different parameter settings that affect how
clustered the resulting embedding appears. This helps us de-
termine what type of structure humans generally prefer in em-
beddings (the second aim of our study).

Experiment 1
In the first experiment, we divided subjects into (1) an expert
group with detailed knowledge of dimensionality reduction
and information on the underlying datasets presented in writ-
ten and pictorial form, (2) a novice group with no knowledge
of dimensionality reduction and no information on the visu-
alized data, and (3) a group of similar novices but with the
same information on the underlying datasets given to the ex-
perts. The dataset information we presented to groups 1 and
3 constituted of an intuitive description of the data, as well as
images representing the underlying data (e.g., the Swiss roll,
or handwritten character images).

Thirty one undergraduate human subjects were recruited
for this study as the novice group, 16 female and 15 male,
with an average age of 19.1 years. None of the novice sub-
jects had any specific knowledge of dimensionality reduction
techniques. Our expert group consisted of five subjects—
three graduate students and two faculty members. The ex-
pert subjects were drawn from the same institution and rep-
resent two different departments. Amongst the five expert
subjects there are four distinct academic backgrounds at the
graduate level. The informed novice group had 15 subjects
and the uninformed novice group 16. We generated two-
dimensional point-light stimuli (see Figure 1 for a visualiza-
tion of all the stimuli) by running the nine dimensionality re-
duction techniques discussed in Section on seven different
high-dimensional datasets, comprising a variety of domains.
We ran each technique for a reasonable range of parameter
settings, and we selected the embedding that was best in terms
of the trustworthiness2 (Venna & Kaski, 2006) for presenta-
tion to the subjects.

Each trial consisted of nine different embeddings of the
same dataset arranged randomly per trial in a 3×3 grid. The
datasets were shown as scatter plots with white points on a
black background to reduce brightness-related eye fatigue.
For novice subjects, trials were organized into three blocks

2The trustworthiness measures the ratio of k nearest neighbors in
the data that is still among the k nearest neighbors in the maps.
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Figure 1: All stimuli from experiment 1. Methods are in rows; datasets are in columns.

of seven, where each dataset appeared once per block and
the order of the datasets within each block was randomized.
Expert subjects were tested on one block. We instructed sub-
jects to choose the two most useful displays and the one least
useful display from the nine available on every trial. After
describing what a scatter plot is and emphasizing that each
set of nine plots is a different perspective on the same dataset,
we gave subjects the following instructions: For each trial,
please examine all the scatter plots and choose the two that
you find most useful and the one that you find least useful. The
task in the second part of this experiment will be much faster
and easier if you choose useful scatter plots. Do the best
you can to choose useful plots based on whatever criteria you
deem appropriate. We intentionally left the task ambiguous
so as not to bias subjects towards particular evaluation crite-
ria3, and the fictitious “second part” of the experiment existed
solely for increasing subject motivation.

We analyzed our novice subjects for internal consistency
of their positive and negative ratings across blocks and found
that even our least consistent subject was more consistent than
expected by chance. Hence, we did not exclude any subjects
due to internal inconsistency. To analyze consistency across
subjects (the first aim of this study) we use Fleiss’ κ (Fleiss,

3For instance, defining a classification task would bias subjects
to embeddings that show separated clusters.

1971) and include neutral responses. Fleiss’ κ measures the
deviation between observed agreement and the agreement at-
tributable to chance given the relative frequency of ratings,
and normalizes for the number of raters. Neutral ratings
are twice as frequent as non-neutral, and positive ratings are
twice as frequent as negative ratings, so the compensation
for relative frequency in Fleiss’ κ makes it well-suited to our
data.

We also measured the following six characteristics of our
embedding stimuli: (1) variance, (2) skewness, (3) kurtosis,
(4) clusteredness, (5) visual span, and (6) Gaussianity. The
variance, skewness, and kurtosis were measured per dimen-
sion in a map that was scale-normalized such that yi ∈ [0,1]d

(preserving the aspect ratio of the maps), and averaged over
the d dimensions of the map. We measured clusteredness
by constructing k-nearest neighbor graphs in the map with
k = 3, . . . ,12, and measuring the maximum clustering coeffi-
cient of the resulting graphs (Watts & Strogatz, 1998). The
clustering coefficient computes the ratio of connections be-
tween the adjacent vertices of map point i, averaged over all
map points. The visual span of each map was measured by fit-
ting a Parzen kernel density estimator with Gaussian kernels
on the map (the variance σ of the Gaussians was optimized on
a small validation set). Subsequently, we measure the ratio of
the map surface that has a density of at least 10% of the max-
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imum density of the density estimate. The Gaussianity of the
maps was determined by averaging the results of Lilliefors
tests (Lilliefors, 1967) performed on 5,000 one-dimensional
random projections of the map4. We analyze the relationships
between novice informed ratings, novice uninformed ratings,
expert ratings, and the six quantitative measures by calcu-
lating the Pearson’s correlation coefficient ρ between ratings
and measures (after normalization within trial).

Figure 2: Human responses to the embeddings in experiment
1. Positive responses in the first row, negative in the second
row. Experts (left), novices (center) and informed novices
(right) by column. Algorithm and dataset ordering are the
same as in Figure 1 within each block.

Experiment 2
The second experiment was run directly following experi-
ment 1 on the same subject pool using the same methods, save
stimulus design. In experiment 2, the nine stimuli in each trial
are obtained by running t-SNE with nine different degrees
of freedom v (viz. v = 0.5,0.8,1.0,1.2,1.5,2.0,2.5,3.0,4.0)
on the seven datasets. The degrees of freedom in t-
SNE determine to what extent the visualizations are “clus-
tered” (Maaten, 2009). Sample stimuli are shown in Figure 3.

Results
Experiment 1
For the first experiment, the Fleiss’ kappa consistency mea-
sure κ for experts is 0.39, for uninformed novices is −0.28,
and for informed novices is −0.40. Fleiss’ kappa κ ranges
from−1 to +1, with−1 representing complete disagreement,
+1 representing complete agreement and 0 representing the
amount of agreement expected by chance. Though there is
no standard significance test for Fleiss’ kappa, based on the
Landis and Koch scale (Landis & Koch, 1977), experts exhib-
ited fair to moderate agreement, while both groups of novices

4Note that if the distribution of points in the embedding is Gaus-
sian, the point distribution in each of the random projections has to
be Gaussian as well.

Figure 3: Sample stimuli from experiment 2. Parameter val-
ues are in rows; datasets are in columns.

exhibited poor agreement. Hence, the consistency measures
reveal that, whereas experts tend to agree with each other on
the quality of an embedding, novices strongly disagree with
each other in their evaluations (they disagree more than if the
evaluation was done randomly). Surprisingly, novices who
received information on the underlying data disagree more
strongly with each other than novices who had no informa-
tion about the underlying data (counter to our hypothesis but
interpretable, see below).

Table 1: Correlation coefficients between human responses
and dataset characteristics. Text in bold if p < .0036 af-
ter Bonferroni correction for n = 14 comparisons per subject
group and α = .05.
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Ex. Pos. .26 -.01 -.19 .34 .17 .22 .41
Ex. Neg. -.08 .17 .19 -.14 -.17 .08 -.08

Nov. Pos. .07 -.03 .50 -.18 -.29 .01 -.08
Nov. Neg. .00 .17 -.10 .22 .10 -.03 .24

Inf. Pos. -.02 -.16 -.10 -.11 .44 -.45 -.09
Inf. Neg. .03 .31 .19 .10 -.19 .20 .19

In Figure 2, we depict the raw ratings (averaged over each
group) as a collection of Hinton diagrams. In the figure, a
large square indicates that a relatively large number of sub-
jects gave a positive or negative evaluation of the embedding
of the corresponding dataset, constructed by the correspond-
ing technique. The top row of diagrams represent positive
responses and the bottom negative, so if subjects are in dis-
agreement about a stimulus, there will be a large box in its
corresponding location in both rows. The diagrams reveal
that informed novices exploit dataset knowledge in specific
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instances to differ significantly from uninformed novices. For
example, the t-SNE embedding of the Swiss roll dataset (a
relatively clustered embedding) is rated much more nega-
tively by novices when they know that the data are gradual.
Experts tend to rate t-SNE positively or negatively depend-
ing on the dataset and show a relatively consistent rating for
Isomap. Informed novices consistently rated Sammon map-
ping and projection pursuit positively while generally rating
manifold learners such as Isomap and LLE negatively. Un-
informed novices are all over the map with the exception of
(like all other subjects) rating MVU as not notable in either a
positive or negative sense.

Table 1 shows correlation coefficients between the six em-
bedding characteristics and the evaluations by the three hu-
man groups. We also present the correlation between the
evaluations and the trustworthiness, which gives an indica-
tion of the quality of the embedding (in terms of local neigh-
borhood preservations). The significant correlations are in
bold type, after a Bonferroni correction for multiple compar-
isons (14 comparisons per subject group, α = .05). Notably,
expert positive ratings are the only ratings that correlate sig-
nificantly and in the correct direction with trustworthiness.
Another correlation that stands out is visual span: it appears
to play a substantial role in informed novice ratings (they ap-
parently surmise an embedding should fill up the available
space), whereas it plays little role in expert ratings.

Experiment 2
For the second experiment, the consistency measure κ for ex-
perts is 0.35, for uninformed novices is −0.32, and for in-
formed novices is −0.26. The results of the second experi-
ment thus reveal a similar trend: experts have fair agreement
on the quality of embeddings, whereas novices give ratings
have poor agreement. The ratings reveal that, whereas ex-
perts selectively rate more clustered or more continuous em-
beddings positively depending on the dataset, novices over-
whelmingly rate the more clustered embeddings as negative.
On the other hand, for positive ratings the novices tend to
choose embeddings at either end of the spectrum while avoid-
ing the moderate values of v. Moderate values of v might be
avoided since subjects want to classify displays closest to the
prototypical clustered or graded display (Rosch, 1975). Us-
ing the same set of correlations from Experiment 1 we find
that experts ratings do not strongly correlate with any of the
characteristics (including trustworthiness), but both groups of
novices show a correlation between negative ratings and those
stimuli with low kurtosis and high clusteredness.

Discussion
In both experiments, experts show themselves to be more
consistent than chance and much more consistent than
novices in either condition. This is reassuring, and indicates
that the idea of having experts evaluating embeddings is not
flawed to begin with. In the first experiment, novice subjects
actually get less consistent with each other if they are in-
formed. While this seems troubling at first, it actually makes

some sense after closer consideration. Comparing the Hin-
ton diagrams between novices and informed novices, one can
plainly see that informed novices are converging on a smaller
selection of techniques for both positive and negative ratings.
The issue for the informed novices, however, is that they are
not sure whether these stimuli should be rated as positive or
negative. As a result, there is often energy for the same cell
in both diagrams. Since the base rate of positive and negative
ratings is low compared to the neutral ratings, the κ consis-
tency measure interprets this as substantial disagreement and
thus the negative numbers. Importantly, the informed novice
κ is further from chance level than the novice κ. In Experi-
ment 2, uninformed novices actually differ more from chance
but the effect is about half the size, and experts remain con-
sistent.

Expert ratings are laudable in that they correlate in the
correct direction with trustworthiness and have a context-
dependent appreciation of clusteredness. Both novice groups
rate clusteredness negatively regardless of context and are
more influenced by elementary characteristics such as visual
span. The substantial difference in strategy between novices
and experts indicates that novices could really benefit from
training on the task of evaluating embeddings (unlike eval-
uating results from topic modeling, image segmentation, or
object recognition).

Conclusion
With respect to the first aim of our study (determining
whether humans are consistent in rating embeddings), we
conclude that dimensionality reduction experts are indeed
reasonably consistent judges of embedding quality. This sup-
ports the practice of soliciting expert judgment for embed-
ding evaluations, as nowadays is common in the literature on
dimensionality reduction. However, we also conclude that
novices are very inconsistent with one another in terms of
their rating of an embedding, even when they have detailed
information on the dataset the embedding is visualizing. In
fact, novices even correlate negatively with a measure of em-
bedding quality.

With respect to the second aim of our study (determining
what types of structure humans appreciate in embeddings),
we conclude that humans do not appear to have overwhelm-
ingly strong a priori preferences, although novices appear to
appreciate gradual embeddings that span a large portion of
the space. Experts can adapt their preference for gradual vs.
clustered depending on the dataset.

Overall, our results discourage free-form solicitation of
human computation approaches á la (Chang et al., 2009)
and (Martin et al., 2001) to the evaluation of dimensional-
ity reduction techniques. Moreover, the novices’ lack of con-
sistency lends worry to the prospect of naı̈ve dimensionality
reduction-based analysis. Most data analysts seeking to ap-
ply dimensionality reduction are not very familiar with the
field. As a result, they are likely to be susceptible to the fa-
vorable visualizations presented in many dimensionality re-
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duction papers. To ensure that dimensionality reduction tech-
niques are applied wisely, authors should strive to explicate
the dataset characteristics that favor their algorithms (e.g., t-
SNE is useful if the data is expected to have cluster struc-
ture, Isomap if the data lie on a convex manifold). Authors
could also cover usage scenarios appropriate to their algo-
rithm (e.g., if a researcher is interested only in visualizing
points that are most different then PCA would suffice and
other techniques would be overkill), including guidelines for
interpreting the relationship between the high and low dimen-
sional spaces (sometimes this relationship will be very clear,
as in PCA; other times, as in MVU, there is not a clear re-
lationship). In addition, data analysts should be encouraged
to use sanity checks such as the trustworthiness measure in
order to prevent them from basing analysis on interesting, but
flawed, embeddings.
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