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Abstract. Automatic image classification algorithms can support coin experts in their analysis and
study of coins. These algorithms take digital images of coins as input and generate a class as out-
put. Automatic classification proceeds in two stages. In the feature-extraction stage, the image is
transformed into a compact representation that contains information on the presence of features. In
the classification stage, the feature representations are mapped onto a class. This paper focuses on
the first stage by presenting and evaluating two feature types for automatic classification of modern
coins: contour features and texture features. For the second stage, a standard (nearest-neighbour or
naive Bayes) classifier is used. We evaluate the classification performance obtained with both feature
types on an image collection of modern coins. The classification results are promising. In addition,
we test the performance on a collection of medieval coins. We show that the effectiveness of the fea-
tures does not generalize to medieval coins, probably due to erroneous labelling of the images. The
paper concludes by stating that automatic image classification algorithms may support coin experts
in their analysis of modern coins. Future work is directed towards finding appropriate features for
ancient coins.

1. Introduction

The development of a system for automatic coin classification can serve two goals. First, it allows
for sorting the large amounts of old European coins that were collected after the introduction of the
euro. Second, systems for automatic coin classification can be of help for institutions working with
historical coins, such as the Dutch Money Museum. Cultural heritage institutions own large collec-
tions of historical coins, which are traditionally stored in safes that are not accessible to the public.
Since recently, historical coin collections are made available to the public by means of the internet.
A good example is the dIMIs? project that allows users to view the coin heritage via their browser.
Unfortunately, systems such asJMIs are not capable of aiding users in the classification of coins.
Therefore, a system such ag/Mis would benefit from a system for automatic classification of coins.

Our goal is to develop a system that is capable of performing image-based automatic classification
of coins. Automatic coin classification consists of two stages: feature extraction and classification.
In the feature-extraction stage, visual properties of the coin image are transformed into feature repre-
sentations. In the classification stage, the feature representations are mapped onto a class. Our study
focuses on the feature-extraction stage by presenting and evaluating feature-extraction techniques on
an image collection of modern coins. In addition, we assess to what extent these techniques can be
successfully applied to a collection of medieval coins.

Until now, only a few studies have focussed on automatic coin classification [1, 2, 3, 11]. Generally,
the systems investigated are limited in performance. Moreover, the systems often require specific de-
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vices such as a proximity sensors. An image-based system with high sorting performances on modern
European coins is presented bl et al. [9]. However, this system highly relies on additional sen-

sor data on coin size and thickness. In contrast, the objective of our coin classification approach is
to obtain a high classification performance using visual data only. A second promising approach is
presented by Hubeat al. [4]. Huberet al. present a system for the recognition of modern coins that

is based on rotation-invariant eigenfeatures.

The outline of the remainder of the paper is as follows. Section 2. gives a brief description of the
image datasets we used to evaluate the classification performance of our features. In section 3., we
present our two types of feature representations for automatic classification of coins in detail. Sec-
tion 4. describes the general setup of our experiments. In section 5., the results of the experiments are
presented. The results of our experiments are discussed in section 6.. Finally, section 7. concludes the
paper.

2. Datasets

In our experiments on automatic coin classification, we used two datasets. The main dataset is the
MuscLE Cis dataset (subsection 2.1.), which we use for evaluating the effectiveness of the feature
types. An additional dataset, the Merovingen coin dataset (subsection 2.2.), is employed to evaluate
to what extent our feature types are appropriate for ancient coin classification.

2.1. MuscLE Cis dataset

The MuscLE Cis dataset contains images of modern European coins that were collected after the
introduction of the euro. Each image in the dataset is labelled with one of 109 different coin classes.
Taken together, the coin classes have 389 different coin faces. The photographed coins were sampled
from a collection of approximately 300 tons of unsorted coins, mainly collected by charity organiza-
tions.

The dataset has a fixed training set of 4,575 coins and a fixed test set of 1,100 coins. The training set
contains approximately 24 images of each coin face. The training set mainly contains selected, non-
degraded coins. The test set contains coins with various levels of degradation. In addition, the test set
also contains a number of non-European coins, which cannot be correctly classified. We measured a
percentage of unknown coins in the test set of 5.64%. This percentage determines the upper limit of
the classification performance, since we do not address coin verification in this study.

2.2. Merovingen coin dataset

The Merovingen coin dataset consists of 4,659 early-medieval coins from the Merovingen dynasty,
photographed on both sides. An example of a coin from the dataset is shown in Figure 1(a).

The coins in the dataset can be classified into four types of classes: (1) city, (2) mint master, (3)
currency, and (4) nation. Table 1 lists the number of classes for the four types, as well as the mean
class size and its standard deviation. The number of coins per classification type differs because not
all coins can be classified accordingly. For instance, for some coins the currency is known, whereas
the mint master is not. The high standard deviations in Table 1 reveal that the class distributions in
the dataset are severely skewed.
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Class type No. of classes Mean class size St. dev. of class size
City 18 53 125
Mint master 19 69 121
Currency 4 859 1,469
Nation 12 199 438

Table 1. Number and size of Merovingen coin classes.

3. Feature extraction

In coin classification, classification performances depend largely on the visual properties extracted
from the coin images. Three main properties are: (1) the face or picture on the coin, (2) the texture
of the coin, and (3) the text on the coin. We focus on the first two properties, leaving the third
(that requires special optical character recognition techniques) to future work. In subsection 3.1.,
we present two contour features that provide a representation of the face or picture on the coin. In
subsection 3.2., we present two texture features to represent the texture of the coin.

3.1. Contour features

Contour features provide a way of representing the contours (i.e. the edges) of an image. The ex-
traction of contour features consists of two stages: (1) the extraction of the contour image and (2) the
representation of this contour image in statistical features.

The extraction of the contour image is performed by convolving a coin image with two orthogonal
Sobel kernels and performing a threshold operation. The outer border edges of the coin are removed

(a) Original coin image. (b) Edge angle histogram. (c) Edge distance histogram.
Figure 1. Edge histogram examples.

from the edge image, since they correspond to the outer border of the coin, which does not contribute

to the classification process. From the resulting contour image, edge-based statistical features are
computed.

Edge-based statistical features represent statistical distributions of edge pixels in a contour image. We
tested two edge-based statistical features for coin classification: multi-scale edge angle histograms
and multi-scale edge distance histograms.

Edge angle histograms represent the distribution of edge pixels in a coarsely discretized polar space.



This is illustrated in Figure 1(b). The height of the histogram bins correspond to the number of edge
points in the polar segments. By definition, the edge angle histogram is not rotation invariant, but the
modulus of its Fourier transform is [13]. Multi-scale edge angle histograms are edge angle histograms
for a number of scales, ranging from coarse to fine. Edge angle histograms for various number of bins
are measured, and combined into one feature vector.

The distances of edge pixels from the centre of the coin are collected in a histogram called the edge
distance histogram. The histogram bins represent the relative frequency of points lying within a con-
centric ring (see Figure 1(c)). Edge distance histograms are rotation invariant by definition. Multi-
scale edge distance histograms are multiple edge distance histograms, one for each scale ranging from
coarse to fine. The histogram bin heights are all combined into one feature vector.

3.2. Texture features

Depending on the scale of analysis and the erosion of the surface, highly detailed artwork and mark-

ings on a coin may be regarded as texture. We selected two types of wavelet features that are ca-
pable of representing the texture of coins: (1) Gabor wavelet features (subsubsection 3.2.1.) and (2)
Daubechies wavelet features (subsubsection 3.2.2.).

3.2.1. Gabor wavelet features

Gabor wavelet features are features based on convolutions of coin images with Gabor filters [8].
Gabor filters are biologically inspired filters exhibiting a response to visual input that is similar to that
of neurons in the human primary visual cortex [5]. The Gabor filter is the product of a 2-dimensional
Gaussian function and a complex sinusoid. It is described by the equation
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In this equation is the bandwidth in octaves. The value @is typically 0.5 < ¢ < 1.5. The
variablesz’ andy’ define the orientation of the sinusoid, and thereby of the function response. They
are defined by the equations
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In these equationg, is the orientation of the filter in radians.

In the literature, various Gabor-based features are proposed, e.g., sparse object representations [6]
and simple Gabor features [7]. In our experiments, we used Gabor histograms, that are commonly
used in texture classification tasks [12]. The extraction of Gabor histograms consists of two stages:
(1) Gabor filtering and (2) histogram extraction. In the first stage, the coin image is convolved with
Gabor filters at various scales and orientations. In the second stage, image histograms are computed
for all resulting convolution images. The combination of the image histograms of the resulting images
forms the Gabor histogram of the image.

On the Gabor histograms, we apply PCA to reduce the dimensionality of the feature vectors. We
selected the SPCA procedure [10] over the normal PCA procedure because of computational and



memory constraints. The resulting feature vectors are 200-dimensional. The percentage of variance
in the original Gabor histograms described by the resulting feature vectors is unknown, since the
SPCA procedure does not provide insight in this percentage.

3.2.2. Daubechies wavelet features

Daubechies wavelet features are based on the computation (i.e. expansion) of wavelet coefficients for
coin images. Their use is widespread in image analysis applications [14]. In our experiments, we used
the Daubechies D4 wavelet transform. The discrete Daubechies D4 wavelet transform is specified by
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The scaling functions that is used to create dilated versions of the wavelet is specified by the equation
a; = hosai + hiSaip1 + hasaipo + hasaiys (6)

In these equations indicates the value of the signaht time step.

In order to construct wavelet features, we compute 2-level, 3-level, and 4-level wavelet coefficients of
the coin images. In order to make our classifiers more robust due to changes in rotation, we perform
the wavelet feature computation for 16 rotated versions of the coin images.

On the obtained wavelet coefficients, we apply the SPCA procedure [10] to reduce the dimensionality
of the feature vectors to 200.

4. Experimental setup

This section describes the general setup of our experiments. In all experiments, we determine the
generalization performance of classifiers that were trained using the features described in section 3..
In our experiments on the WscLE Cis dataset, we used the fixed training set of 4,550 coins and
the fixed test set consisting of 1,100 coins (see subsection 2.1.). We improved our results on the
MuscLE Cis dataset, by applying a preselection based on a measurement of the total surface area
of the depicted coin. In this preselection, we assume that the average area of a coin class is within a
small range (7%) of the area of the unclassified coin.

On the Merovingen coin dataset, we performed our experiments using 10-fold cross validation. We
performed the classification on this set using a naive Bayes classifier, in order to exploit the skewness
in class priors in the dataset (see subsection 2.2.).

In the experiments, we use edge-distance histograms with 2, 4, 8, and 16 bins to construct the multi-
scale edge-distance histogram. For the multi-scale edge-angle histograms, we combined edge angle
histograms of 4, 8, 16, and 32 bins. For the Gabor histograms, we performed experiments using 5
scales and 16 rotations of the Gabor wavelet.

5. Results

The section presents the classification performances for the two feature types presented in section 3.
on the MuscLE Cis dataset. Subsequently, the performances on the Merovingen coin dataset are
presented.

The classification performances on they8CLE Cis dataset are listed in Table 2. The results reveal

that a combination of multi-scale edge distance histograms and Gabor histograms yields the best



Approach Class. perf.
Area 40%
Multi-scale edge distance histogram 68%
Multi-scale edge angle histogram 17%
Gabor histograms 55%
Wavelet features 46%
Area + MSEDH 75%
Area + MSEDH + Gabor histograms 76%

Table 2. Classification performances on the MscLE Cis dataset.

Approach City | Mint master| Currency| Nation
Area 16% 10% 61%| 17%
Multi-scale edge distance histogram12% 8% 50% | 20%
Multi-scale edge angle histogram | 8% 6% 34% | 14%
Gabor histograms 5% 6% 25% 8%
Wavelet features 8% 5% 25% 6%

Table 3. Classification performances on the Merovingen coin dataset.

classification performance. We analysed the classifications of individual coins and found that, in
general, a wrong classification is due to one of the two following reasons: (1) the offered coin type
was not in the training set (see subsection 2.1.) or (2) the coin is very dark. An example of a very
dark coin is shown in Figure 2. For very dark coins, not all edge pixels in the coin are found, thereby
decreasing the quality of the contour features. In addition, very dark coins have a lack of contrast,
which decreases the quality of the texture features. We performed an additional test on a set of 100
manually selected high-contrast coins. On this set, we measured a classification performance of the
combination Area + EMDH of 89%.

The classification performances for the Merovingen coin dataset are presented in Table 3. The
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Figure 2. Example of a dark coin.

results reveal a low identification performance compared to those obtained for the modern coins (see
Table 2), especially when the skewness of the class distributions (see subsection 2.2.) is taken into
account. Therefore, the results indicate that features, which achieve high classification performances
on modern coins, do not yield successful performance on the Merovingen coin dataset.



6. Discussion

From the results presented in section 5., we make two observations.

First, the classification performances on modern coins are promising. Obviously, future work is neces-
sary to further improve the results. This work should focus on the enhancement of edges and contrast
in dark coins, since a lack of clear edges is the main cause of incorrect classifications. Second, we
observe that our feature-extraction schemes do not generalize to the Merovingen coin dataset. We
surmise this is due to the differences in the nature between modern coins and medieval coins. We
observe four differences between the modern and medieval coins. First, medieval coins are not fabri-
cated in a factorial process, whereas modern coins are. As a consequence, the positions of the stamps
on medieval coins vary per coin. In addition, medieval coin dies deteriorate quickly. Hereby, the coin
die produces a different stamp on each coin. Second, medieval coins are often strongly eroded due
to frequent use and by being buried in the soil. Although modern coins are often also damaged by
abrasion or dirt, their stamps are usually better observable than those of medieval coins. Third, the
variety in the stamps of medieval coins is smaller than the variety in stamps of modern coins. Fourth,
expert classifications of medieval coins suffer from inconsistencies and errors. Figure 3 shows an
example of inconsistent labelling of the Merovingen dataset. It is likely that the low classification
performances on the Merovingen coin dataset are partly due to the inconsistencies in the labelling.
The observations above lead to the question how a system for automatic classification of medieval
coins should work. The text on medieval coins is highly discriminating between coin classes. How-
ever, it is unlikely that current state-of-the-art in character recognition is capable of reading the texts
on medieval coins. Therefore, an inscription-based approach is not promising. Experts indicate that
classification of medieval coins is performed by looking at differences in style and by applying a large
number of non-documented rules. Therefore, we foresee the development of a semi-automatic adap-
tive system that allows the expert to indicate relevant parts of classified coins. In combination with
our contour and texture features, such a "human-in-the-loop” approach allows the expert knowledge
to be gradually incorporated into the system.

(a) Coin classified aBrankish (b) Coin classified aBrisian.

Figure 3. lllustration of dataset inconsistency.

7. Conclusions

We have presented two effective feature types for the classification of modern coins. Our results
revealed a combination of contour and texture features to yield the best performance. Furthermore,
our work shows that the same features do not perform well on medieval coin data. We provided

insight in the differences between modern and medieval coins, and proposed ideas for future work on
the classification of medieval coins. Future work should also include the creation of a medieval coin

dataset without inconsistencies, and a sufficient number of instances per class.
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