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ABSTRACT

State-of-the-art stereo matching algorithms estimate dispari-

ties using local block-matching, and subsequently refine the

disparity estimates by introducing smoothness constraints

and performing global energy minimization. Such algorithms

are hampered by the inability of local block-matching algo-

rithms to deal with repetitive patterns. This paper presents

an approach that overcomes this problem by incorporating

the disparity obtained from matching SURF key points be-

tween stereo image pairs. The algorithm provides further

robustness to problems with repetitive pattern by penalizing

the discrepancy between the initial and final disparity esti-

mates in the global energy minimization. Evaluation of our

approach on the Middleburry data set results shows that the

our approach is more robust against repetitive patterns than

existing approaches.

Index Terms— Stereo Matching, Global Energy Mini-

mization, SURF key points

1. INTRODUCTION

The goal of stereo matching is to find an estimate of the depth

information inside a scene. This depth estimate can be used

for, among others, 3D image reconstruction, virtual view ren-

dering, and 3D object classification.

State-of-the-art stereo matching algorithms (see [1, 2]

for an overview) are based on locally matching small image

patches to determine the disparity at each image location

[3, 4]. In many algorithms, the results of the local match-

ing algorithm are refined by incorporating smoothness con-

straints that suppress noisy disparity estimates [5, 6, 7, 8, 9].

Although these algorithms work well in many cases, they

have severe problems in the presence of repetitive patterns

(see Fig. 1): when a repetitive pattern is present, the disparity

estimates of the neighbouring patches may be widely varying.

Employing smoothness constraints is generally insufficient

to resolve the repetitive pattern problem. To our knowledge,

there is no study that specifically aims to solve this problem

for state-of-the art segment based methods.

In this paper, we introduce a novel stereo disparity estima-

tion algorithm that tries to resolve the repetitive pattern prob-

lem by employing SURF key points to refine local matching

algorithms. Incorporation of matching key points between

rectified stereo pairs provides robustness against repetitive

patterns by restricting the search space of the local match-

ing. To further reduce the problems with repetitive patterns,

we propose a global energy minimization formulation that

penalizes large discrepancies between the initial and the re-

fined disparity estimates. As a result, any improvement in the

initial disparity estimation has a direct influence on the final

disparity estimation.

Our approach comprises four main stages which will be

further discussed in Section 2. Section 3 presents the experi-

mental evaluation of our approach. We draw our conclusions

in Section 4.

2. DISPARITY ESTIMATION

Similar to other state-of-the-art stereo matching approaches,

our approach comprises four main stages: (1) colour segmen-

tation, (2) initial disparity estimation with SURF key points,

(3) plane fitting, and (4) disparity plane assignment using

graph cuts. These four stages are described separately below.

Colour Segmentation. The reference image is seg-

mented into non-overlapping homogeneous color regions

using mean-shift segmentation [10] resulting in a set of seg-

ments T . The main assumption of segmenting the image

is that disparity discontinuities can only occur at segment

boundaries. Therefore, the disparity within a segment can be

modelled by a planar surface in later stages of our approach.

Initial Disparity Estimation with SURF Key Points. In

this work, we propose to incorporate information obtained by

key points into the initial estimation of the disparity. Our ap-

proach decreases the noise that is caused by repetitions of pat-

tern using a restricted disparity search space, since it reduces

the tendency of many algorithms to estimate the disparities

wrongly. The details of the algorithm are as follows: Since the

images are already rectified for stereo-matching, the matching

key points should lie on the same epipolar line. Therefore, the

vertical positions of key points should satisfy:

∀s ∈ S : |ysL − ysR| < 0.5, (1)

where S is the set of matched key points, and ysL and ysR are

the vertical positions of those points in left and right views,

respectively. The information on the disparity of key points

and on the segments in which the key points are located can

be used to obtain a new lower and upper bound, dt,low and
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dt,high, for the disparity search range of the pixels inside that

segment rather than manually set dmin and dmax:

∀t ∈ T, ∀(x, y) ∈ t : dt,low ≤ d(x, y) ≤ dt,high. (2)

where dt,low and dt,high are given by:

dt,low =

{
max{�θ1 − θ2�, dmin} if Kt �= ∅

dmin otherwise,
(3)

dt,high =

{
min{	θ3 − θ2
, dmax} if Kt �= ∅

dmax otherwise,
(4)

where, θ1, θ2 and θ3 are given by:

θ1 = min{∀(x, y) ∈ Kt : |xL − xR|},
θ2 = α× (dmax − dmin), (5)

θ3 = max{∀(x, y) ∈ Kt : |xL − xR|},
Kt : ∀(x, y) ∈ t ∩ S.

Herein, d(x, y) is the disparity of the pixel at location (x, y)
and α is a scaling coefficient that ranges between 0 and 1.

Since the disparity search space is bounded by dt,low and

dt,high rather than by dmin and dmax, the algorithm does not

consider disparities corresponding to the repetitions as a re-

sult of which the correct disparity is more likely to be found

by local matching.

Local pixel matching is based on a matching cost func-

tion and an aggregation window around the pixel of interest.

As matching costs, we used the sum of absolute differences

between images, and between their image gradients:

CI(x, y, d) = |IL(x, y)− IR(x+ d, y)| , (6)

C�(x, y, d) = | �x IL(x, y)−�xIR(x+ d, y)| (7)

+ | �y IL(x, y)−�yIR(x+ d, y)| ,
dL(x, y) = argmind(

∑
∀x,y∈t

CI(x, y, d) + C�(x, y, d)).

The cost of a pixel inside the box is aggregated if and only if

that pixel resides in the same segment as the center pixel. The

non-occluded pixels are used in the global energy minimiza-

tion as trustful pixels in terms of disparity and similar to [7],

these pixels are found by using cross-check validation. Fig-

ure 1 illustrates the enhancement in quality by using SURF

key points for initial matching. The red circle indicates a re-

gion in which there is repetition of pattern.

Plane Fitting. Based on the initial disparity estimate, we

model each segment by a plane and estimate the parameters

of this plane using RANSAC. Since RANSAC works best

when there are at least 50 percent of inliers and because large

regions provide larger clusters of reliable disparities than

smaller regions, we opt to apply the RANSAC to segments

that contain more than 100 pixels, and of which at least 50

percent of the pixels are non-occluded. The planes that have

similar surface normals and mean disparities are eliminated

Fig. 1. The initial disparity result; (a) reference image (repe-

tition of pattern encircled), (b) without SURF, (c) with SURF.

heuristically, which results in a small set of planes that are

sufficient to represent the scene.

Disparity Plane Assignment Using Graph Cuts. A dis-

parity plane is assigned to each image segment by minimiz-

ing an energy function that incorporates both data costs and

smoothness constraints. The energy minimization problem is

solved using a graph-cut approach in which each node cor-

responds to a segment. Let P be the set of disparity plane

parameter labels. Our aim is to find a labelling f that assigns

each segment t ∈ T to its plane label p ∈ P by minimizing

the following energy function:

E(f) = Edata(f) + Esmooth(f), (8)

where Edata(f) is the cost of assigning plane labels to the

segments.

In most of the state-of-the-art algorithms, such as [6, 7],

the matching cost of Eq. 6 and Eq. 7 is used as the data

term. In this work, we propose to use the following Disparity

Estimate Discrepancy Cost (DEDC) instead:

Edata(f) =
∑
t

∑
(x,y)

λ|df(t)(x, y)− d(x, y)|e−n/m, (9)

∀t ∈ T, ∀(x, y) ∈ t−Ot,

in which Ot is the set of occluded pixels in t, n is the num-

ber of non-occluded pixels that have the same initial disparity

as the disparity after plane fitting, m is the number of non-

occluded pixels inside the segment, λ is the scaling coeffi-

cient, and df(t) represents the disparity of the pixel (x, y) af-

ter fitting a plane with label f(t) on pixels for segment t:

df(t)(x, y) = af(t)x+ bf(t)y + cf(t). (10)

By penalizing large discrepancies between the initial and the

final disparity estimates, Edata(f) favors solutions that are

close to the initial estimate. As a result, the final estimate will

not “jump” to the wrong part of repetitive patterns, which

is what traditional data costs would do. Esmooth(f) is a

smoothness term that penalizes the discontinuities in plane

labels of neighbouring segments. We define Esmooth(f) as:

Esmooth(f) =
∑
t

∑
q

γ(t, q)(1− δ(f(t), f(q))), (11)

∀t ∈ T, ∀q ∈ N(t).
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Herein, N(t) is the set of neighbors of t and γ(t, q) is:

γ(t, q) = wβe(−τ2/σ2), (12)

where w and σ are scaling parameters, β and τ are the bound-

ary length and the mean colour difference between t and q,

respectively.

3. EXPERIMENTS

Experimental Setup. To evaluate the performance of our

algorithm, we performed experiments on the Middleburry

benchmark data set. We evaluate the algorithm by measuring

the percentage of pixels that have erroneous disparity values.

Herein, a disparity value is defined to be erroneous if the

absolute difference from ground truth is larger than 1. As in

common practice in the evaluation of stereo algorithm, we

look at results for (1) non-occluded pixels only (nonocc), (2)

all pixels (all), and (3) pixels in image regions that are close

to a disparity discontinuity (disc). In all experiments, we set

α in Eq. 5 equal to 0.25, α in Eq. 10 equal to 10 and w = 25,

σ = 150. Additionally we choose two mean-shift parameters,

hs and hr as 5 and 4 respectively.

Experimental Results. In order to show the effect of us-

ing key points (KP) and DEDC, all four possible variants of

our algorithm on the Tsukuba scene are evaluated. Table 1

presents the quantitative results and Fig. 2 shows the corre-

sponding disparity images. The experimental results of the al-

gorithm without KP and DEDC illustrate the problems of cur-

rent stereo-matching algorithms with repetitive patterns. In

particular, the disturbance of repetitions of patterns is clearly

recognizable in the final disparity image in Fig. 2. When

key points are used, the quantitative results get better because

the disturbance of repetition of pattern is suppressed. When

both KP and DEDC are incorporated, the best performance is

obtained. These results illustrate the ability of our approach

to deal with the repetitive pattern problem. Fig. 3 shows the

performance of the best variant of our algorithm (KP+DEDC)

on all four Middleburry scenes and Table 2 compares the per-

formance of our algorithm with four state-of-the-art disparity

matching algorithms. The results in Figure 3 and Table 2 indi-

cate that our algorithm performs on par with the state-of-the-

art on the first three scene; and that it outperforms all other

algorithms on the Venus scene.

4. CONCLUSION

In this paper, we presented a novel stereo disparity estimation

algorithm with two main contributions. The results indicate

that the proposed algorithm perform on par with the state-

of-the-art algorithms on all four scenes of Middleburry and

that it outperforms all state-of-the art algorithms on the Venus

scene.

Table 1. Percentage of erroneous disparity values of the dis-

parity estimations for Tsukuba scene.

Algorithm nonocc all disc
baseline 2.64 3.26 11.8

KP 1.56 2.23 7.42

DEDC 1.25 1.75 6.28

DEDC and KP 1.08 1.59 5.82
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Fig. 2. Estimated final disparities: (a) Ground truth, (b) without KP and without DEDC, (c) with only KP, (d) with only DEDC,

(e) with DEDC and KP.

Table 2. Percentage of erroneous disparity values of proposed algorithm with top performing algorithms.

Algorithm Avg. Rank Tsukuba Venus Teddy Cones
nonocc all disc nonocc all disc nonocc all disc nonocc all disc

Proposed 24.2 1.08 1.59 5.82 0.08 0.16 1.11 4.49 8.06 12.2 3.59 9.4 11.0

ADCensus [11] 5.8 1.07 1.48 5.73 0.09 0.25 1.15 4.1 6.22 10.9 2.42 7.25 6.95

AdaptingBP [6] 7.2 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.8 2.48 7.92 7.32

CoopRegion [5] 7.2 0.87 1.16 4.61 0.11 0.21 1.54 5.16 8.31 13.0 2.79 7.18 8.01

DoubleBP [9] 9.7 0.88 1.29 4.76 0.13 0.45 1.87 3.53 8.3 9.63 2.9 8.78 7.79

Fig. 3. Results on Middleburry scenes. From top to bottom: the Tsukuba, Venus, Teddy and Cones scenes. From left to right:

reference images, ground truth disparities, the results of the proposed algorithm and the error images where the black regions

represents the erroneous pixels.
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