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ABSTRACT

The paper presents a small empirical study into emotion
and affect recognition based on auditory and visual features,
which was performed in the context of the Audio-Visual
Emotion Challenge (AVEC) 2012. The goal of this compe-
tition is to predict continuous-valued affect ratings based on
the provided auditory and visual features, e.g., local binary
pattern (LBP) features extracted from aligned face images,
and spectral audio features.

Empirically, we found that there are only very weak (lin-
ear) relations between the features and the continuous-valued
ratings: our best linear regressors employ the offset-feature
to exploit the fact that the ratings have a dominant direction
(more increasing than decreasing). Much to our surprise,
only exploitation of this bias already leads to results that
improve over the baseline system presented in [10]. The
best performance we obtained on the AVEC 2012 test set
(averaged over the test set and over four affective dimen-
sions) is a correlation between predicted and ground-truth
ratings of 0.2255 when making continuous predictions, and
0.1921 when making word-level predictions.

Categories and Subject Descriptors
L.5 [Pattern Recognition]: Applications
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1. INTRODUCTION

Social signal processing aims to automatically identify so-
cial cues by inspecting modalities such as facial expressions,
human body pose, gestures, non-verbal auditory informa-
tion, and speech [14]. Whilst the development of systems
that automatically recognize basic emotions (see [1] for an
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overview) or facial action units (e.g., [4, 2, 12]) has seen great
improvements over the last decade, the automatic recogni-
tion of higher-level social signals such as arousal, expectancy,
power, and valence is still very difficult. To foster the devel-
opment of new techniques for the identification of such social
signals, Schuller et al. [11, 10] recently started organizing
the Audio-Visual Emotion Challenge (AVEC). The goal of
this competition is to predict ratings of four affective dimen-
sions that were obtained by soliciting human raters (viz. of
arousal, expectancy, power, and valence). The ratings are
continuous and specified for each frame in the videos, i.e.
they are measured at 25 frames per second. The compe-
tition consists of two main parts, viz. the fully continu-
ous sub-challenge (FCSC) and the word-level sub-challenge
(WLSC). In the FCSC challenge, a prediction needs to be
made for every frame in the videos, i.e. predictions need to
be made at 25 frames per second. In the WLSC challenge,
word timings are provided and predictions are made of the
average rating during the utterance of a single word.

The paper describes our submission to the AVEC 2012
competition, which comprises a very simple system that
nonetheless appears to outperform the baseline system de-
scribed by Schuller et al. [10]. Specifically, we use very
simple linear regressors because we surmise these are most
robust against the large amounts of noise in the input fea-
tures and because it is straightforward to train on massive
databases such as the AVEC 2012 data. We did experi-
ment with more complex models including conditional ran-
dom fields [3, 7, 13], linear dynamical models [9], and Gaus-
sian Process regressors [8] in preliminary experiments; but
we could not establish any performance improvements using
these more complicated models. In part, this may be be-
cause the relations between the data and the target values
appear to be very weak: our best predictors largely ignore
the observations when making predictions (see Section 4). In
future work, we intend to capture as much of the learning
signal as possible using ensemble methods.

In our study, we did not focus on extracting better video
or audio features, and we also did not try to use the word
annotations in our predictions; we merely tried to maximize
the performance whilst using the pre-computed features as
provided by the organizers of the challenge [10]. We surmise
that the extraction of more elaborate features will, how-
ever, be necessary to obtain truly good performances on the
AVEC 2012 competition data.

We describe our system in Section 2, and present the re-
sults of our experiments in Section 3. We conclude the paper
with a discussion in Section 4.



2. SYSTEM

Our system comprises two main parts: (1) a part that
performs feature extraction and (2) a part that regresses
the resulting features onto the four target dimensions. The
two parts are described separately below.

2.1 Features

We adopted the audio and video features that were ex-
tracted by Schuller et al. [10] from the SEMAINE corpus
[5]. The audio features comprise 25 features that are related
to the overall energy and the spectrum of the audio signal
(e.g., energy per band, entropy, and harmonicity) and 9 fea-
tures that are voice-related (e.g., FO, jitter, and harmonics-
to-noise ratio). The video features were obtained by aligning
the face images with the help of a standard Viola-Jones face
detector, and densely extracting 8-bit local binary patterns
(LBPs; [6]) from the aligned face images in 10 x 10 pixel
blocks. For the WLSC challenge, word timings were mea-
sured and the audio and visual features were averaged over
the full temporal span of the word [10].

Because previous studies in, e.g., automatic action-unit
labeling have found that changes of features over time may
be very informative in social signal processing [12], we also
compute temporal differences between features. Specifically,
on the FCSC challenge, we compute the differences between
a feature and its corresponding feature 100 frames earlier
(i.e. using a differencing window of 4 seconds). On the
WLSC challenge, we compute the differences between fea-
tures and the corresponding features measured during the
previous word. In preliminary experiments, we found these
window sizes to produce good results.

2.2 Regression

As our regressor of choice, we used a simple l>-regularized
linear least-squares regression. Given a training set D =
{(x1,41), (X2,92), ..., (x~,yn)}, where x represents a fea-
ture vector and y the corresponding target, a linear least-
squares regressors minimizes the following regularized least-
squares criterion:
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where w represents a linear combination of the input fea-
tures, and X represents a regularization parameter that needs
to be set by the user. It is well-known that the weights w*
that minimize the regularized quadratic loss are given by:
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where Ip represents the D x D identity matrix. The key
advantage of training a linear least-squares regressor is that
it scales linearly in N and that it does not require the full
data set to be read into memory; the expectations E[xx"]
and E[xy] under the data distribution can be computed on-
the-fly using a single sweep through the data (i.e. requiring
only one full read of all the data from disk). This gives
us an important advantage over support vector regressors
and Gaussian process regressors, which scale quadratically in
N, and over gradient-descent learners that require multiple

sweeps over the training data. This makes it possible to
train a linear least-squares regressor in about 10 minutes on
a simple laptop computer (most of which is spent on reading
data from disk).

We did notice that there are correlations between some
of the target dimensions, e.g., between arousal and valence.
We did not exploit such correlations in our predictors, but
it is straightforward (and may be helpful) to do so: a simple
whitening transform may be applied on the target dimen-
sions. After predicting the whitened targets, the reverse
whitening transform needs to be applied to obtain the final
prediction. Indeed, it is also possible to incorporate (Gaus-
sian) temporal smoothness constraints on the targets in the
quadratic loss, which leads to standard linear dynamical sys-
tem. We did not use such a Kalman smoother in our study,
because the rating sequences are not modeled well by Gaus-
sian dynamics. Instead, the target sequences appear to have
been generated by a switching distribution: the targets are
approximately constant most of the time, but sporadically,
the target values change drastically.

Since the evaluation criterion of the competition is the cor-
relation between the predicted and the true ratings, it is not
important that one accurately predicts the actual ratings.
Because the target values only sporadically change drasti-
cally, it is much more important to accurately predict when
a rating is rapidly increasing, when it is rapidly decreas-
ing, or when it is roughly keeping the same value. A simple
approach to achieve this is to train the regressors on the
derivative of the rating signal instead of on the rating signal
itself. In our experiments, we estimate the derivative of the
rating signal using the first-order differences of the signal.
(Indeed, it may have been helpful to use a smoother deriva-
tive estimate that is obtained by, e.g., applying a derivative-
of-Gaussian filter.)

On the WLSC challenge, we use regularized linear least
squared to train a single regressors that predicts the affec-
tive dimensions from the average features for a word (the
averaging is over the temporal span of the word). On the
FCSC challenge, we follow [10] and use the word timings to
train two separate regressors: one regressor for the parts of
the video that do contain speech, and one regressor for the
parts of the video that do not contain speech.

3. EXPERIMENTS

To evaluate the performance of our approach, we per-
formed experiments on the AVEC 2012 data set. The setup
of these experiments is described in 3.1. The results of the
experiments are presented in 3.2.

3.1 Experimental setup

In our experiments, we used the pre-processed version of
the AVEC 2012 data set as described in [10]. The data is an-
notated per frame by human raters for arousal, expectancy,
power, and valence; the ratings are continuous-valued. The
data is subdivided into a of 31 training, 32 validation, and
32 test videos. In total, the data contains 1,358, 123 frames
(comprising 7.5 hours of video). We used the fixed divi-
sion of the data in all our experiments. In the paper, we
present only results obtained by (1) training on the training
data and testing on the development data and (2) training
on the combined training and development data and testing
on the test data (in which case the organizers measured the
performance of our predictors).



Features | Ratings Arousal | Expect. | Power | Valence Mean
Normal Normal 0.1550 0.1599 | 0.1193 0.2047 0.1597
Normal Derivative 0.2733 0.0695 0.4193 0.1199 0.2205
Derivative | Normal 0.0936 0.0914 0.1477 0.0152 0.0870
Derivative | Derivative 0.2686 0.0864 | 0.4216 0.1434 0.2300
Baseline system [10] 0.181 0.148 0.084 0.215 || 0.1570
Our best system 0.2733 0.1599 | 0.4216 0.2047 || 0.2649

Table 1: Correlations between predicted and ground-truth ratings on the AVEC 2012 development set for

the FCSC competition (higher is better; best performance is boldfaced).

Features | Ratings Arousal | Expect. | Power | Valence Mean
Normal Normal 0.0702 0.1060 | 0.0219 0.1833 0.0953
Normal Derivative 0.2463 0.2662 0.3501 0.0497 0.2281
Derivative | Normal 0.2366 0.2642 | 0.3477 0.0440 0.2231
Derivative | Derivative 0.2407 0.0481 | 0.4088 0.1030 0.2001
Baseline system [10] 0.018 0.009 0.001 0.002 0.0075
Our best system 0.2463 0.2662 | 0.4088 0.1833 || 0.2762

Table 2: Correlations between predicted and ground-truth ratings on the AVEC 2012 development set for
the WLSC competition (higher is better; best performance is boldfaced).

We use cross-validation to determine the optimal regu-
larization parameter . In all experiments, we allowed our
linear predictors to predict an offset by adding a constant
feature with a value of 1 to the data; the offset was not
regularized.

The quality of the predicted targets is measured via its
Pearson correlation with the ground-truth targets. This
means that the exact value of the targets does not need
to be correct, but that the direction of the predicted tar-
get signal needs to be correct over time: high correlations
are achieved when the predicted target signal goes up if the
ground-truth target signal goes up, and the predicted target
signal goes down if the ground-truth target signal goes down.
(This makes the performance measure invariant under rat-
ing offset variations between movies.) The correlations are
computed per movie, and subsequently, averaged over all
movies in the test data to obtain the final quality measure.

3.2 Results

Table 1 and 2 provide an overview of the results on the
development set, obtained using regressors that were trained
on the training set. The results are presented separately for
the FCSC and WLSC sub-challenges. The results presented
in the tables reveal that predicting the derivative of ratings
may be beneficial for the prediction of arousal and power,
which suggests that human perception of these affective di-
mensions is for a large part relative to earlier observations
of the same individual. For expectancy and valence, the sit-
uation is much less clear: these two affective dimensions are
much harder to predict, which is reflected in lower average
scores and higher variances in the scores between experi-
ments. On the development set, the best mean correlations
we obtain are 0.2649 for the FCSC sub-challenge and 0.2762
for the WLSC sub-challenge, which is quite a bit better than
the performances of the baseline system (which are 0.157 and
0.039, respectively [10]).

Table 3 and 4 present the results on the AVEC 2012 test
set, obtained using regressors that were trained on the com-

bined training and development set (the performance on the
test set was measured by the AVEC 2012 competition orga-
nizers). Again, the results are presented separately for the
FCSC and WLSC sub-challenges. The results on the test
set are in line with those on the development set: predicting
arousal and power is relatively easy compared to predicting
expectancy and valence. In addition, it also appears that
predicting rating derivatives is more effective for the for-
mer two affective dimensions, although the results are less
pronounced than on the development set. For valence, it
appears to be best to predict the actual ratings using the
standard features, whereas for expectancy, the results vary
inexplicably between the two sub-challenges. The best aver-
age performances we obtained are 0.2255 for the FCSC sub-
challenge and 0.1921 for the WLSC sub-challenge. Whilst
these performances are noticeably lower than the results on
the development set — despite the fact that they were ob-
tained using regressors that were trained on twice as much
data — the performances are still better than the perfor-
mances of the baseline system (which are 0.112 and 0.027,
respectively [10]).

4. DISCUSSION

A curious observation we made is that — when we predict
rating derivatives — cross-validating over A frequently leads
to the selection of extremely high values of A (in both com-
petitions). In particular, the value of X is frequently chosen
to be so high that all feature weights are effectively pushed
to zero. In this way, the predictor essentially ignores the
observations altogether and only uses the offset to make the
predictions. The learning then exploits a bias in the data,
viz. that ratings are more likely to go up over time than
down. Since the offset is in the rating-derivative domain, it
can be used to predict a linearly increasing rating. (If we had
included a time stamp as a feature with the normal features,
we could have obtained a similar effect.). Such a “constant”
predictor actually already outperforms the baseline system
on the development set.



Features | Ratings Arousal | Expect. | Power | Valence Mean
Normal Normal 0.1524 0.1659 | 0.1278 0.1453 0.1479
Normal Derivative 0.2809 0.0341 0.2680 0.0517 0.1578
Derivative | Normal 0.2056 0.1095 0.1669 0.0684 0.1376
Derivative | Derivative 0.2990 0.0798 | 0.2918 0.0409 0.1779
Baseline system [10] 0.141 0.101 0.072 0.136 || 0.1125
Our best system 0.2990 0.1659 | 0.2918 0.1453 || 0.2255

Table 3: Correlations between predicted and ground-truth ratings on the AVEC 2012 test set for the FCSC
competition (higher is better; best performance is boldfaced).

Features | Ratings Arousal | Expect. | Power | Valence Mean
Normal Normal 0.0861 0.1269 | 0.0817 0.1375 0.1080
Normal Derivative 0.1281 0.0528 | 0.2123 0.0295 0.1057
Derivative | Normal 0.1669 0.1269 | 0.2160 0.0096 0.1299
Derwative | Derivative 0.1452 0.2414 | 0.2225 0.0255 0.1587
Baseline system [10] 0.021 0.028 0.009 0.004 0.0155
Our best system 0.1669 0.2414 | 0.2225 0.1375 || 0.1921

Table 4: Correlations between predicted and ground-truth ratings on the AVEC 2012 test set for the WLSC
competition (higher is better; best performance is boldfaced).

This observation, together with the observations that (1)
prediction performances for expectancy and valence are very
low and unstable and (2) more complex regression models
such as Gaussian process regressors did not produce perfor-
mance improvements in our preliminary experiments, sug-
gests that there is very little information in the data that
is relevant to the prediction of affective dimensions. Next
to extracting better features, it thus seems like a sensible
approach to combine the results of different approaches via
simple ensemble methods such as linear blending to max-
imally exploit the little bit of learning signal in the data.
(Similar approaches have produced good results in other
competitions in which the learning signal was very weak,
such as the Netflix and Heritage Health Prize competitions.)
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