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Abstract

Fisher kernels provide a commonly used vec-
torial representation of structured objects.
The paper presents a technique that exploits
label information to improve the object rep-
resentation of Fisher kernels by employing
ideas from metric learning. In particular, the
new technique trains a generative model in
such a way that the distance between the
log-likelihood gradients induced by two ob-
jects with the same label is as small as pos-
sible, and the distance between the gradi-
ents induced by two objects with different
labels is as large as possible. We illustrate
the strong performance of classifiers trained
on the resulting object representations on
problems in handwriting recognition, speech
recognition, facial expression analysis, and
bio-informatics.

1. Introduction

Classification of structured objects, i.e., automatically
assigning a single label to a time series or graph, is an
important problem in many domains. A traditional
approach to the classification of a structured object
Xn = {xn1, . . . ,xnT } with xnt ∈ Rd is to train a gen-
erative model for each of the classes y ∈ {1, 2, . . . , C},
and to use the resulting generative models in a Bayes
classifier through p(yn = c|Xn) ∝ p(Xn|yn = c)p(yn =
c). The main drawback of such an approach to struc-
tured object classification is that it cannot make use of
powerful discriminative learning techniques that have
been developed for the classification of vectorial data,
such as kernel machines or metric learning. To address
this drawback, various studies have proposed kernel
or dissimilarity functions that capture some measure
of similarity between structured objects, and that can
be used in the training of (kernel) classifiers (Gärtner,
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2003; Bicego et al., 2009). Key examples of such ker-
nels and dissimilarity measures are the Fisher kernel
(Jaakkola & Haussler, 1998), the TOP kernel (Tsuda
et al., 2002a), the probability product kernel (Je-
bara et al., 2004), marginalized kernels (Tsuda et al.,
2002b), and graph edit distances (Bunke & Allermann,
1983) or dynamic time warping (Sakoe & Chiba, 1978).

In general, computing graph edit distances is NP-hard,
which limits practical applicability. Probability prod-
uct kernels and marginalized kernels have the disad-
vantage that they cannot readily be used in learning
settings in which the training objects do not have the
same underlying graph structure (such as the learning
settings we consider in our experiments); Fisher ker-
nels and TOP kernels do not have such a limitation.
The key intuition behind the Fisher kernel (and the
TOP kernel) is that similar objects induce similar log-
likelihood gradients in the parameters of a generative
model p(X). To construct a Fisher kernel for struc-
tured objects, one thus computes the log-likelihood
gradient induced by each of the objects in the parame-
ters of a generative model. The Fisher kernel function
is then defined as a weighted inner product between
the gradients of two structured objects. Herein, the
weighting is performed using the Fisher information
metric; this weighting is necessary because different
types of model parameters have different scales. In
practice, however, the Fisher information metric is of-
ten ignored and a (normalized) kernel is used that sim-
ply embeds objects in a Euclidean space by using the
gradients induced by the objects as features.

Clearly, the embedding computed by the Fisher ker-
nel depends on how the parameters of the generative
model p(X) are set. When constructing a Fisher ker-
nel, the generative model is usually trained to max-
imize the likelihood of the data. However, there is
no guarantee that maximum likelihood training leads
to an object representation that is well suited for dis-
crimination, i.e., to an embedding in which objects
with similar labels are embedded close together and
in which objects with different labels are embedded
far apart. In this paper, we argue that maximum
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likelihood training of generative models indeed may
lead to suboptimal Fisher kernels, because a genera-
tive model that models the data well (in terms of data
likelihood) leads to gradient representations that are
(nearly) zero. To address this problem of Fisher ker-
nels, we propose a technique that learns the model pa-
rameters in such a way that the resulting embedding
has a low nearest-neighbor error. We evaluate the new
technique, called “Fisher kernel learning” (FKL), on
data sets for (1) online handwritten character recogni-
tion, (2) recognition of spoken Arabic words, (3) recog-
nition of facial expressions from videos, and (4) recog-
nition of mutagen molecules. The results of our exper-
iments reveal the potential benefits of FKL compared
to traditional Fisher kernels.

The outline of the remainder of this paper is as follows.
In Section 2, we discuss the Fisher kernel in more de-
tail, and we argue that the use of models that are
trained to maximize data likelihood as a basis for the
Fisher kernel may be suboptimal. Section 3 presents
our new technique for learning the model parameters,
called Fisher kernel learning (FKL), which aims to
set the parameters in such a way as to minimize the
nearest-neighbor error of the object embedding. Sec-
tion 4 presents the results of experiments in which we
compare FKL with two other structured object repre-
sentations (using four different classifiers). Section 5
discusses the results of these experiments. Section 6
concludes the paper, and presents potential directions
for future work.

2. Fisher Kernel

Fisher kernels have been proposed as a principled way
to use the power of probabilistic generative models in
kernel methods (Jaakkola & Haussler, 1998), and have
since been successfully used in numerous applications,
e.g., in protein homology detection (Jaakkola et al.,
2000) and speaker recognition (Campbell et al., 2006).

Suppose we are given a collection of labeled structured
objects D = {(X1, y1), (X2, y2), . . . , (XN , yN )}, where
the structured object Xn = {xn1,xn2, . . . ,xnT } and
the object label yn ∈ {1, 2, . . . , C}. Also, suppose that
the underlying structure of object Xn can be repre-
sented using a graph Gn = (Vn, En) in which the i-th
vertex corresponds to xni and in which an edge (i, j)
indicates a pairwise relation between xni and xnj . A
straightforward way to model the distribution p(X)
is using a pairwise Markov Random Field (MRF) over
multinomial hidden variables z = {z1, z2, . . . , zT } with

arbitrary emission distributions as follows

p(X) ∝
∑
z

[∏
i∈V

pω(xi|zi)

]
exp

 ∑
(i,j)∈E

Azizj

 . (1)

Herein, A is a matrix of log-transition probabilities,
and the emission distribution pω(xi|zi) is, e.g., a Gaus-
sian or a multinomial distribution with parameters ω.
The parameters of the pairwise MRF, Θ = {ω,A},
are typically trained in such a way as to maximize the
log-likelihood L(D) =

∑N
n=1 log p(Xn). This training

can be performed using a (variational) expectation-
mazimization algorithm or using gradient ascent.

The rationale behind the Fisher kernel is that two
similar objects induce similar gradients in the param-
eters of the generative model (Jaakkola & Haussler,
1998). In other words, the Fisher kernel assumes
that two similar structured objects Xn and Xm have

similar partial derivatives ∂L(Xn)
∂θ and ∂L(Xm)

∂θ for all
θ ∈ Θ. To simplify the notation, we denote the gradi-
ent of the log-likelihood L(Xn) of a single structured
object Xn with respect to the model parameters as

gn =
[
∀θ ∈ Θ : ∂L(Xn)

∂θ

]
.

Using the gradients gn as features that represent the
structured object Xn, the Fisher kernel function κ is
defined as

κ(Xi,Xj) = gTi U
−1gj .

Herein, the matrix U is the Fisher information metric,
which corrects the similarity measurement for the fact
that generative models generally lie on a non-linear
Riemannian manifold1. In other words, the Fisher ker-
nel is defined as the inner product of the directions of
gradient ascent over the manifold, i.e., the inner prod-
uct of the natural gradients (Amari, 1998). The Fisher
information metric can be computed as

U = E

[(
∂L(X)

∂Θ

)T (
∂L(X)

∂Θ

)]
p(X)

, (2)

where the expectation is over the distribution defined
by the generative model. Asymptotically, however, the
information metric is immaterial (Jaakkola & Haus-
sler, 1998), which is why the Fisher information met-
ric is often ignored in practice, i.e., it is assumed that
U = I. The resulting practical Fisher kernel (Shawe-
Taylor & Christianini, 2004) thus simply uses the gra-
dients gn as features, without any further rescalings
or normalizations.

1The Fisher information metric accounts for the fact
that a change of, say, 0.1 in the transition parameters has
a different effect on the log-likelihoods than a change of 0.1
in the emission parameters.
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The key problem of the feature representation used in
the Fisher kernel is that maximum likelihood training
does not necessarily give rise to a representation that
is well suited for classification tasks. In fact, if the
distribution represented by the trained model closely
resembles the data distribution, the Fisher kernel rep-
resentation is presumably very bad: the gradients for
all objects in the data will be nearly zero. In prac-
tice, the Fisher kernel representation often comprises
a large number of very small gradients (for objects that
have high probability under the model) and a few very
large ones (for objects that have low probability under
the model). It is unlikely that such a representation
forms a good basis for the classification of structured
objects. Indeed, it is possible to partly overcome scal-
ing problems by using kernel normalization or by plug-
ging the gradients into a Gaussian kernel with adaptive
bandwidth. However, this does not address the prob-
lem that the generative model was trained to maxi-
mize a different objective than the objective we have
in mind: maximizing separation between classes in the
embedding.

3. Fisher Kernel Learning

Fisher kernel learning (FKL) aims to address the prob-
lem of Fisher kernel representations that maximum
likelihood learning may lead to poor object represen-
tations. It does so by employing the label information
that is available for the objects in the training data.
Instead of training the generative model p(X) using
maximum likelihood, FKL trains the model in such a
way that objects with the same class induce gradients
that are similar, whereas objects with different classes
induce log-likelihood gradients that are dissimilar. Ef-
fectively, FKL thus applies ideas from metric learning
(Goldberger et al., 2005; Globerson & Roweis, 2006;
Weinberger et al., 2007) to the Fisher representation.

FKL defines the similarity between two structured ob-
jects Xi and Xj using a stochastic selection rule

pij =
exp(−(gi − gj)

TWTW(gi − gj))∑
j′ 6=i exp(−(gi − gj′)TWTW(gi − gj′))

, (3)

where W is a diagonal matrix.

The product M = WTW is a diagonal metric (M � 0)
that weighs the partial derivatives; it serves a similar
purpose as the Fisher information metric. The prob-
ability pij may be interpreted as the probability that
object i picks object j as its nearest neighbor in the
log-likelihood gradient embedding. Assuming we per-
form classifications using a 1-nearest neighbor classi-
fier, pij may thus be interpreted as the probability that
object Xi inherits the class label of object Xj .

Motivated by neighborhood components analysis
(Goldberger et al., 2005), FKL maximizes the ex-
pected number of correctly classified objects by a 1-
nearest neighbor classifier that operates under the
above stochastic selection rule, i.e., it maximizes

O(Θ,W;D) =
∑
i

∑
j 6=i

δyiyjpij , (4)

where δyiyj is the Kronecker delta. The maximiza-
tion of Equation 4 is performed with respect to the
model parameters Θ and the matrix W. In prelimi-
nary experiments, we also investigated maximizing the
log-probability of a correct classification by maximiz-
ing O(Θ,W;D) =

∑
i

∑
j 6=i δyiyj log pij . Such an ob-

jective function is motivated by MCML (Globerson &
Roweis, 2006), but we found it to work less well.

Intuitively, maximizing Equation 4 trains the model
in such a way that objects with the same class induce
similar gradients in the model parameters (have large
pij), and that objects of a different class induce dis-
similar gradients (have small pij). Here, similarity is
defined under the Mahalanobis metric M; the met-
ric M is learned together with the model parameters
Θ. We expect that FKL produces an object represen-
tation that is better suited for classification than the
Fisher kernel representation discussed in Section 2.

The objective function in Equation 4 contains two
types of unknown variables: (1) the posterior probabil-
ities over vertices ∀i ∈ Vn : γnik = p(zni = k|Xn) and
edges ∀(i, j) ∈ En : ξnijkm = p(zni = k, znj = m|Xn),
and (2) the parameters Θ and W. This suggests the
use of an EM-like algorithm that alternates between
(1) computing the posterior probabilities γni and ξnij
using an (approximate) inference algorithm and (2) in-
creasing the value of Equation 4 by updating the pa-
rameters Θ and W using a (projected) gradient step,
keeping the posteriors fixed. In general, such an alter-
nating optimization of Equation 4 is not guaranteed
to converge to a local maximum. Nonetheless, we opt
to use the alternating optimization algorithm, because
we found it to converge in practice. Moreover, alter-
nating optimization is significantly less cumbersome
than doing gradient ascent.

Fixing the posteriors γni and ξnij , the gradient of
O(Θ,W;D) with respect to a parameter θ ∈ Θ is

∂O

∂θ
= 2Mθ

∑
i

∑
j 6=i

[
δyiyjpij(gi − gj)

(
∂gi
∂θ
− ∂gj

∂θ

)]
−

pi
∑
j 6=i

[
pij(gi − gj)

(
∂gi
∂θ
− ∂gj

∂θ

)] ,
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where Mθ represents the element from the diagonal of
M that corresponds to parameter θ, and pi =

∑
j pij .

After each gradient update of the model parameters,
the solution may need to be projected back onto the
manifold of valid models: e.g., if the emission distri-
butions are multinomial, the parameters of these dis-
tributions need to be normalized to sum up to one.

The gradient of Equation 4 (with the posteriors γni
and ξnij fixed) with respect to W is given by

∂O

∂W
= 2W ◦ ∂O

∂M
,

where ◦ indicates an element-wise multiplication, and
where ∂O

∂M is given by

∂O

∂M
= −

∑
i

∑
j 6=i

δyiyjpij‖gi−gj‖2−pi
∑
j 6=i

pij‖gi−gj‖2.

The metric M remains positive semidefinite without a
projection step, since we defined M = WTW.

4. Experiments

To evaluate the performance of FKL, we performed
classification experiments on four data sets: (1) an
online handwritten character data set, (2) a data set
of spoken Arabic digits, (3) a facial expression analy-
sis data set, and (4) a data set of mutagen molecules.
The first three data sets contain variable-length time
series, whereas the fourth data set contains general
(loopy) graphs. The four data sets are briefly intro-
duced in 4.1. The setup of our experiments is pre-
sented in 4.2; the results of the experiments are pre-
sented in 4.3.

4.1. Data sets

The online handwritten character data set contains
pen trajectory data that consists of three variables,
viz., the pen movement in the x-direction and y-
direction, and the pen pressure (Williams et al., 2008).
The data set contains 2, 858 time series with an aver-
age length of 120 frames. Each time series corresponds
to a single handwritten character that has one of 20
labels. The data set is not completely balanced, but
the variation in number of objects per class is small.

The Arabic spoken digit data set contains utterances
of digits spoken in Arabic (Hammami & Bedda, 2010).
In the collection of the data set, 88 speakers (44 males
and 44 females) uttered each of the 10 digits ten times,
leading to a total of 8, 800 utterances. Each time series
consists of 13-dimensional MFCCs that were sampled
at 11, 025Hz, 16-bits using a Hamming window.

The facial expression analysis data set we used is the
second release of the Cohn-Kanade data set (Lucey
et al., 2010). The data set contains 593 videos of sub-
jects showing a (posed) facial expression; the average
length of each video is 18.1 frames. A subset of 327
of the videos is labeled as corresponding to one of the
seven basic emotions (anger, contempt, disgust, fear,
happiness, sadness, and surprise); we used this labeled
subset in our experiments. We used the project-out
inverse compositional algorithm (Matthews & Baker,
2004) to fit active appearance models (Cootes et al.,
1998) with 68 facial feature points on all frames of the
327 videos. We represent each frame by the variation2

of the feature point locations with respect to the first
frame (Lucey et al., 2010), leading to time series with
a 2× 68 = 136-dimensional feature representation.

The mutagenicity data set comprises 4, 337 molecules,
which are represented as graphs in which each node
corresponds to one of fourteen atoms (i.e., there is a
single discrete feature per node) and each edge cor-
responds to a covalent bond (Riesen & Bunke, 2008).
Roughly half of the molecules are mutagen, whereas
the other half is nonmutagen. Mutagenicity is an ad-
verse property of a compound that hampers its poten-
tial to become a marketable drug. We aim to predict
mutagenicity of a molecule based on its structure.

4.2. Experimental setup

In our experiments, we compared FKL to two other
structured object embeddings: (1) a vector of the log-
likelihoods log p(X|y = c) under models that were
trained on objects from a single class and (2) the gra-
dients that the objects induce in the model parameters
of a model that was trained using maximum likelihood
(i.e., the practical Fisher kernel representation). We
leave the comparison of FKL to discriminative models
such as HCRFs (Quattoni et al., 2010) and discrim-
inative mixtures/HMMs (Eddy et al., 1995; Kim &
Pavlovic, 2006) to future work because of space limi-
tations, and because these models do not provide an
object embedding like FKL. We also do not compare
with classifiers based on graph edit distances (Bunke &
Allermann, 1983), as these are NP-hard to compute3.

In all experiments, we used the pairwise MRFs de-
scribed in Equation 1 as model. When the struc-
tured objects are time series, this model is similar to

2Before this variation is computed, variation due to
translation, rotation, or rescaling of the face is projected
out using a Procrustes alignment.

3We note here that for the special case of time series,
edit distances and dynamic time warping actually perform
very well (Xi et al., 2006; Ding, 2008). However, we are
interested in the more general case of structured objects.
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an HMM with undirected state chain. On the hand-
written character, Arabic speech, and facial expression
data sets, we used isotropic Gaussian emission distri-
butions pω(xi|zi) because these data sets have contin-
uous features. On the mutagenicity data set, we used
multinomial emission distributions pω(xi|zi) because
this data set has discrete features.

To perform inference in the model (i.e., to evaluate
the posterior probabilities over vertices and edges), we
use belief propagation when inference is tractable, and
loopy belief propagation with a sequential message-
passing scheme (Kschischang et al., 2001) when in-
ference is intractable. The inference procedures were
implemented using libDAI (Mooij, 2010).

To obtain the log-likelihood and Fisher object repre-
sentations, we perform maximum likelihood learning
of the model parameters Θ using an EM-algorithm
in tractable models, and using gradient ascent in in-
tractable models. We do not regularize the model pa-
rameters. The log-likelihood and Fisher object rep-
resentations are computed using the model obtained
after maximum likelihood learning has converged.

To obtain the FKL object representations, we train
the model using an optimizer that alternates between
(1) evaluating the posterior probabilities over vertices
and edges and (2) maximizing O(Θ,W;D) with re-
spect to the models parameters Θ and the matrix W
by performing a step in the direction of steepest as-
cent, keeping the posteriors fixed. In our implemen-
tation of FKL, the step size is determined using a
line search that satisfies the Wolfe conditions (we used
back-tracking and cubic inter/extrapolation).

For data sets with continuous features, we normalized
the data to be zero-mean, unit-variance. In models
that were trained using maximum likelihood, the emis-
sion distributions were initialized by training a mixture
model using an EM-algorithm. In models that were
trained using FKL, the parameters of the emission
distributions were initialized randomly. In all mod-
els, the transition log-probabilities A were initialized

to 0. The metric M was initialized as diag
(

N∑N
n=1 g2

n

)
,

in which the gradients gn were computed using the
initial model.

The classification is performed by feeding the object
representations into three classifiers: (1) a softmax
classifier, (2) a linear SVM, and (3) a large-margin
nearest neighbor classifier (LMNN; Weinberger et al.
(2007)). The L2-regularization parameter of the soft-
max classifiers and the slack variable of the SVMs were
determined based on cross-validation tests on a small
held-out validation set. For the log-likelihood repre-

Table 1. Generalization errors (in %) on the handwritten
character data set for four different classifiers (Bayes clas-
sifier, logistic regressor, SVM, and LMNN + k-NN) on
three different object embeddings (log-likelihoods of class-
specific models, Fisher representations, and FKL represen-
tations), using various numbers of hidden states. The table
reports the generalization error over 10 folds. Best per-
formance for each number of hidden states is typeset in
boldface.

Classif. K Likelih. Fisher FKL

Bayes
2 17.68 – –
5 10.04 – –
10 6.98 – –

Softmax
2 4.70 11.16 10.04
5 4.84 5.58 4.25
10 4.67 5.33 3.82

SVM
2 3.86 9.37 9.51
5 3.65 4.46 3.72
10 3.89 4.63 3.51

LMNN
2 4.88 17.75 8.60
5 4.07 17.47 3.26
10 4.11 10.32 3.33

sentation, we also investigated a Bayes classifier that
computes p(y = c|X) ∝ p(X|y = c)p(y = c).

On the handwritten character data set and on the
Cohn-Kanade data set, the generalization performance
of our classifiers is measured using 10-fold cross-
validation. On the Arabic speech data set, we mea-
sured the classifier performances using the fixed di-
vision into training set (75% of the data) and test
set (the remaining 25%) proposed by Hammami &
Bedda (2010). On the mutagenicity data set, we used
a fixed division into training set (90% of the data)
and test set (the remaining 10%). Code that repro-
duces the results of our experiments is available from
http://homepage.tudelft.nl/19j49/fisher.

4.3. Results

Below, we present the results of our experiments on
the four data sets.

Character data set. The results of our experiments
on the online handwritten character data are presented
in Table 1. The table presents the average generaliza-
tion errors over 10 folds for the three different rep-
resentations and four different classifiers, using three
different values4 for the number of hidden states K. To
the best to our knowledge, no previous results on the
online handwritten character data set are presented

4The reader should note here that to obtain the log-
likelihood representation, C models with K hidden states
are trained; the other two representations only use a single
model with K hidden states.

http://homepage.tudelft.nl/19j49/fisher
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Table 2. Generalization errors (in %) on the Arabic speech
data set for four different classifiers on three different em-
beddings. The table reports the generalization error on
the fixed training/test division proposed by Hammami &
Bedda (2010).

Classif. K Likelih. Fisher FKL

Bayes
2 14.23 – –
5 12.46 – –
10 14.46 – –

Softmax
2 8.86 16.41 21.46
5 8.14 10.46 10.09
10 10.32 8.23 6.95

SVM
2 8.45 16.73 22.59
5 7.91 9.41 10.36
10 10.55 7.64 6.91

LMNN
2 10.27 16.28 25.32
5 13.68 17.23 12.41
10 11.00 36.77 7.23

in the literature; this prevents us from comparing our
results with those of other studies. From the results
presented in Table 1, we make three main observations.

First, we observe that the log-likelihood representation
outperforms the other two representations for small
numbers of hidden states. This observation is presum-
ably due to the fact that the log-likelihood represen-
tation is determined by C times more parameters for
the same number of hidden states, because it trains a
separate model for each of the C classes. This may
provide the likelihood representation with more flexi-
bility than the other two representations.

Second, we observe that the FKL representation has
the potential of outperforming the other two rep-
resentations. In particular, the lowest generaliza-
tion error obtained using the FKL representation is
3.26%, whereas the likelihood and Fisher representa-
tions achieve errors of 3.86% and 4.46%, respectively.
The strong performance of the FKL representations
appears to be independent of the selected classifier.

Third, the results in the table reveal the relatively poor
performance of the standard Fisher representation; in
our experiments, classifiers trained on the Fisher rep-
resentation are outperformed by FKL as well as by
classifiers that are trained on per-class log-likelihoods.
Presumably, this result is due to the fact that to ob-
tain the Fisher representation, models are used that
were trained to maximize the likelihood of the train-
ing data. As we argued in Section 2, this may lead to
object representations that are suboptimal in terms of
discrimination between classes.

Arabic spoken digits. The generalization errors
achieved on the Arabic spoken digits data set are pre-

Table 3. Generalization errors (in %) on the Cohn-Kanade
data set for four different classifiers on three different em-
beddings. The table reports the mean generalization error
over 10 folds.

Classif. K Likelih. Fisher FKL

Bayes
2 50.00 – –
5 55.63 – –
10 57.05 – –

Softmax
2 28.13 30.63 8.75
5 40.31 45.00 10.63
10 45.31 65.00 9.06

SVM
2 36.56 54.69 10.94
5 48.13 60.63 13.44
10 42.19 77.19 14.06

LMNN
2 66.25 70.94 10.94
5 66.56 66.56 15.94
10 65.63 65.31 15.63

sented in Table 2. On the Arabic spoken digits data,
again, the log-likelihood representation outperforms
FKL when the number of hidden states is small. Cu-
riously, on the Arabic spoken digits data, Fisher rep-
resentations also lead to higher generalization accura-
cies than the FKL representation for small numbers of
hidden states. So far, we have no good explanation for
this result.

Having said that, the best performance on the Ara-
bic spoken digits data is, again, obtained using the
FKL representation: the log-likelihood representation
achieves a lowest generalization error of 7.91%, the
Fisher kernel representation achieves a lowest error of
7.64%, whereas the FKL representation achieves a low-
est error of 6.91%. The performance of FKL on the
Arabic spoken digits data is on par with the state-of-
the-art performance on this data set of 6.88% (Ham-
mami & Bedda, 2010).

Facial expression data. The results of the experi-
ments on the Cohn-Kanade data set are presented in
Table 3; we report generalization errors that are aver-
aged over 10 folds. The results presented in Table 3
are in line with those on the previous two data sets:
the FKL data representation leads to higher general-
ization accuracies than the Fisher kernel representa-
tion. In particular, the generalization errors achieved
by the likelihood and Fisher kernel representations are
28.13% and 30.63%, respectively; the FKL representa-
tion attains a generalization error of 8.75%.

An interesting observation from Table 3 is the rela-
tively poor performance of the log-likelihood represen-
tation. Presumably, this poor performance is the re-
sult of the nature of the facial expression data: because
of the small changes in facial feature point locations in
most expressions, very small variations in the features
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Table 4. Generalization errors (in %) on the mutagenicity
data set for four different classifiers on three different em-
beddings. The table reports the generalization error on a
fixed 90% training/ 10% test division.

Classif. K Likelih. Fisher FKL

Bayes
2 51.96 – –
5 42.49 – –
10 45.73 – –

Softmax
2 30.48 33.72 32.10
5 33.49 33.03 24.94
10 32.10 28.18 22.17

SVM
2 38.12 33.95 34.64
5 36.72 33.72 34.41
10 35.33 30.48 30.95

LMNN
2 40.42 33.72 24.25
5 39.03 33.03 45.69
10 43.08 36.72 33.03

determine which facial expression is present. These
small variations presumably have a small effect on the
likelihoods of the data under the models (the C mod-
els may model very similar distributions), which gives
rise to the poor performance of the log-likelihood rep-
resentation on the facial expression recognition task.

Mutagenicity data. In Table 4, we present the gen-
eralization errors of our classifiers on the mutagenic-
ity data set. The reader should note that this data
set contains structured objects which have arbitrary
(loopy) underlying graphs, so not just time series.

The results on the mutagenicity data set are in line
with those on the previous three data sets. In partic-
ular, the lowest error of 22.17% is obtained using an
FKL object representation, whereas the log-likelihood
and Fisher kernel representations give rise to lowest
errors of 30.48% and 28.18%, respectively. By compar-
ison, the state-of-the-art performance on this data set
is 34.5% error (although this result was obtained us-
ing a somewhat different experimental setup; Riesen &
Bunke (2008)). The results of the experiments on the
mutagenicity data set suggest that the performance of
FKL does generalize to models in which exact infer-
ence is intractable.

5. Discussion

Taken together, the results of our experiments re-
veal that, in discriminative tasks, training a model to
minimize the nearest-neighbor error of a Fisher ker-
nel embedding has the potential of outperforming em-
beddings of structured objects that are derived from
models that maximize the likelihood of the data. Al-
though our present experiments focus on the classi-
fication of graph-structured objects that can be ap-

propriately modeled by the pairwise MRF model in
Equation 1, the idea of training probabilistic genera-
tive models to minimize the nearest-neighbor error of
an embedding of the data may be applied more gen-
erally. In particular, the log-likelihood gradient of any
generative model may be plugged into Equation 3.

For instance, the log-likelihood gradients of probabilis-
tic matrix factorization (Salakhutdinov & Mnih, 2008)
may be plugged into Equation 3. When applied to a
problem such as movie recommendation, the resulting
technique may be able to use genre labels of movies
to construct a movie embedding in which movies from
different genres are better separated (as such a solu-
tion leads to log-likelihood gradients that have large
between-class variation and small within-class varia-
tion). As another example, one may use the gra-
dients of probabilistic latent semantic analysis (Hof-
mann, 1999) in Equation 3. The resulting technique
would be able to embed documents in such a way, that
documents with similar topic or genre labels are em-
bedded close together (and documents with different
labels are embedded far apart). We leave such exten-
sions of FKL to future work.

6. Conclusion

We presented a technique, called Fisher kernel learning
(FKL), that uses label information to improve the ob-
ject embeddings that are used in Fisher kernels. The
label information is exploited by learning the param-
eters of the underlying model in such a way as to
minimize the nearest-neighbor error of the embedding.
The results of our experiments with FKL (using pair-
wise MRFs as the underlying model) on four real-world
data sets illustrate its potential.

Future work aims at investigating applications of FKL
to other types of data, in particular, to user-movie
ratings and to corpora of word-presence/tf-idf vectors.
We also intend to explore unsupervised variants of
FKL, for instance, by replacing the current metric-
learning objective by a maximizing-variance objective
(Weinberger et al., 2007). Such a variant may be used
for, among others, the visualization of structured ob-
ject similarities in two-dimensional scatter plots.
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Tsuda, K., Kawanabe, M., Rätsch, G., Sonnenborg, S.,
and Müller, K.-R. A new discriminative kernel from
probabilistic models. Neural Computation, 14(10):2397–
2414, 2002a.

Tsuda, K., Kin, T., and Asai, K. Marginalized kernels
for biological sequences. Bioinformatics, 18:S268–S275,
2002b.

Weinberger, K.Q., Sha, F., Zhu, Q., and Saul, L.K. Graph
Laplacian regularization for large-scale semidefinite pro-
gramming. In Advances in Neural Information Process-
ing Systems, volume 19, 2007.

Williams, B.H., Toussaint, M., and Storkey, A.J. Modelling
motion primitives and their timing in biologically exe-
cuted movements. In Advances in Neural Information
Processing Systems, volume 20, pp. 1609–1616, 2008.

Xi, X., Keogh, E.J., Shelton, C.R., Wei, L., and Ratanama-
hatana, C.A. Fast time series classification using nu-
merosity reduction. In Proceedings of the International
Conference on Machine Learning, pp. 1033–1040, 2006.


