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C
anvas analysis is an important tool in art-historical 
studies, as it can provide information on whether 
two paintings were made on canvas that originated 
from the same bolt. Canvas analysis algorithms 
analyze radiographs of paintings to identify (ir)reg-

ularities in the spacings between the canvas threads. To reduce 
noise, current state-of-the-art algorithms do this by averaging 
the signal over a number of threads, which leads to information 
loss in the final measurements. This article presents an algo-
rithm capable of performing thread-level canvas analysis: the 

algorithm identifies each of the individual threads in the canvas 
radiograph and directly measures between-distances and angles 
of the identified threads. We present two case studies to illus-
trate the potential merits of our thread-level canvas analysis 
algorithm, viz. on a small collection of paintings ostensibly by 
Nicholas Poussin and on a small collection of paintings by Vin-
cent van Gogh. 

IntroduCtIon
The analysis of paintings is increasingly aided by the availability 
of imaging and image-processing tools, including various types 
of imaging to reveal underpaintings and underdrawings [1], [2], 
techniques for automatic brushstroke segmentation and analy-
sis [3]–[5], and automatic face analysis techniques [6]. These 
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tools can help art historians, conservators, and restoration art-
ists understand the way in which different painters worked and 
may provide clues about the attribution of a painting to a partic-
ular artist. One of the most commonly performed analyses is 
the analysis of radiographs (X-rays) of paintings, as such radio-
graphs can reveal visible and hidden 
paint layers according to the radio-
opacity of the paint. Radiographs do 
not only provide essential informa-
tion on the materials that need to be 
used in restorations, but they may 
also form the basis for valuable art-
historical insights. 

In addition to information on the 
radio-opacity of the paint, radio-
graphs also reveal the individual 
threads in the canvas (see Figure 1) because the ground layer, 
which generally contains lead, varies in thickness when it is spread 
over the textured surface of the bare canvas. Until a few years ago, 
art experts generally considered the display of the threads as a dis-
turbance because it was obfuscating what they were truly inter-
ested in: the composition of the different paint layers. More 
recently, however, scholars have realized that the canvas threads 
visible in radiographs may carry important art-historical informa-
tion [7]. This information arises from the fact that the thicknesses 
of the threads are irregular because of the way a loom works. 
Some threads are thinner than others because of natural varia-
tions in the manufacturing process: a thread with higher tension 
on it tends to be narrower. Such irregularities persist throughout 
the entire bolt of canvas. As a result, paintings made on canvas 
that was cut from the same bolt will likely have the same irregu-
larities in their thread thicknesses. Thread thickness measure-
ments may be used to identify the bolt from which the canvas 
originates. Specifically, if we find two paintings that have the same 
canvas thread thicknesses, we have obtained a strong indication 
that these two paintings were made in the same workshop in the 
same period [8]. 

Thread densities or thread spacings are good surrogates for the 
thread thicknesses that we would like to measure. Various recent 
studies have attempted to measure thread densities and/or spac-
ings across the canvas, in particular, in paintings by Nicolas Pous-
sin [9], Vincent van Gogh [10], Johannes Vermeer [11], [12], and 
Diego Velázquez [13]. In particular, these studies estimate the 
thread density in a small patch of the painting using a two-dimen-
sional (2-D) Fourier analysis [14] or an approach based on mea-
suring autocorrelations in small canvas patches [9]. These 
analyses provide valuable information, but they average informa-
tion across relatively large patches of canvas (over five threads or 
more), which leads to low-resolution thread density maps. The 
averaging may hide variations in the thickness of individual 
threads, which makes it harder to obtain conclusive evidence that 
two canvases originated from the same roll. 

In contrast to most prior work (the work by [12] is a notable 
exception), this article proposes an algorithm for thread-level 
analysis of the canvas. Our approach involves training a 

machine-learning model to identify thread crossings in the canvas 
based on their visual appearance. The resulting model is used to 
automatically identify the millions of thread crossings inside a 
canvas, which, in turn, form the basis for measuring thread spac-
ings. We show the merits of thread-level canvas analysis by using 

it to study a collection of three 
alleged Nicolas Poussin paintings as 
well as a small collection of paintings 
by Vincent van Gogh. 

thread-LeveL Canvas 
anaLysIs
Our approach to thread-level canvas 
analysis comprises four main parts: 
1) we extract features from the radio-
graphs that are sensitive to the sig-

nals produced by the threads, 2) we train and deploy a 
machine-learning model that automatically detects thread cross-
ings based on these features, 3) we use the response of this detec-
tor to estimate the distance between neighboring threads, and 
4) we automatically try to match the resulting thread-distance 
maps produced for different canvases to determine whether or not 
these canvases likely originate from the same roll. The details of 
these four parts of our approach are described separately below. A  
MATLAB implementation of our canvas analysis algorithm is pub-
licly available from http://lvdmaaten.github.io/canvas. 

Feature extraction
Thread-crossing detection can be performed with very high accu-
racy because thread crossing corresponds to visually salient loca-
tions in canvas radiographs. Our thread-crossing detector: 
1) extracts histograms-of-oriented-gradient (HOG) features from 
the image region around the canvas location of which we want to 
determine whether or not it corresponds to a thread crossing and 
2) uses a linear support vector machine to determine based on 
these features whether or not the location is a thread crossing or a 
“nonthread crossing.” 

[FIG1] an example of a high-resolution radiograph of the nicolas 
Poussin painting triumph of Bacchus. the inset shows the 
individual threads in a small part of the canvas. (radiography 
reproduced with permission from the nelson-atkins Museum of 
arts in Kansas City.)

radIoGraPhs do not onLy  
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HOG features [15] describes an image location by a histogram 
of image gradient magnitudes for a number of quantized gradient 
orientations (we used eight orientations in our study). The histo-
grams are constructed over small image patches; depending on 
the type of canvas and the resolution of the canvas radiographs, we 
used image patches of 4 4#  or 8 8#  pixels in this study [in 

radiographs scanned at 600 dots per inch (dpi)]. Subsequently, the 
histograms are normalized for contrast differences by normalizing 
the L2-norm of all the histograms in a square, spatially connected 
block of four image patches. The advantage of the use of image 
gradients and the subsequent contrast normalization is that it pro-
duces partial invariance to larger-scale signals in the radiograph 
images that stem from the paint layers (in particular, from layers 
of white paint that contain relatively large amounts of lead, which 
in turn lead to strong radiograph responses). To obtain additional 
invariance to small variations in the gradient magnitudes, the 
contrast-normalized histograms are clipped at 0.2 and then renor-
malized according the L2-norm to produce the final HOG fea-
tures. The resulting features have a particular structure near 
thread crossings, which is illustrated in Figure 2. 

thread-crossing detection
To obtain a model that can automatically distinguish thread cross-
ings from other structures in canvas radiographs, we train a logis-
tic regression model to discriminate a set of image patches that 
contain manually annotated thread crossings (positive examples) 
from a set of image patches that are randomly sampled from the 
canvas (negative examples). Ideally, the set of positive examples 
describes the variation in the visual appearance of thread cross-
ings, while the set of negative examples captures the visual varia-
tion in nonthread-crossings. Denoting an image patch in the 
training data by ,I  the corresponding label by { , },z 1 1! - +  and 
the HOG feature function by ,z  the logistic regressor builds the 
following probabilistic model: 
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Herein, the hyperparameter 2v  is set via cross-validation. The result-
ing weights w* are visualized as a HOG feature in Figure 3. The fig-
ure shows that they are a template for the visual appearance of a 
typical thread crossing. This training procedure need to be performed 
only once for a particular type of canvas, assuming the imaging con-
ditions are similar across the collection of canvas radiographs. 

After training, the trained model (i.e., the template) is applied 
to all image patches in a canvas radiograph to predict the likeli-
hood ( | ; )Ip z i  that a location in the canvas contains a thread 
crossing. An example of the resulting likelihood map is shown in 
Figure 4(c); brighter colors indicate a higher likelihood of the 
location containing a thread crossing according to the logistic-
regression model. The quality of the likelihood map can be sub-
stantially improved by exploiting that the likelihood map ought to 
be quite regular: the likelihood of the thread-crossing presence at 
location ( , )x y  should be high when there is a high likelihood of 

[FIG2] examples of five canvas patches around (a) a thread 
crossing and (b) five randomly selected canvas patches along 
with the corresponding hoG feature-representation of these 
patches.

Crossings Noncrossings

(a) (b)

[FIG3] a visualization of our thread-crossing detector. the figure 
shows that the detector identifies crossings as a location at 
which prolonged horizontal and vertical edges (caused by the 
boundaries of the threads) cross.
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thread-crossing presence near the locations ( , ),x d yx-  
( , ),x d yx+  ( , ),x y dy-  and ( , ),x y dy+  where dx  and dy  are 
the average distances between threads in the warp and weft direc-
tions, respectively. We employ a pictorial-structures model [16] 
that can exploit this information to also detect thread crossings for 
which little visual evidence is present (e.g., because the thread 
crossing is hardly visible due to the presence of lead white paint). 
Our pictorial-structures model computes the score s  for thread-
crossing presence based on the image patch ( , )I x y  extracted at 
location ( , )x y  as follows: 
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where 0$a  is a manually set discount factor and where 
{ , }t 1 1x ! - +  and { , } .t 1 1y ! - +  Intuitively, the score for a 

location is thus given by the sum of the likelihood for that loca-
tion and the likelihood of the highest-scoring locations in a 

four-lattice surrounding that location, where the score of those 
locations is discounted by the distance to their expected location. 
While the resulting score is not technically a likelihood, it may 
be employed in the same way. An example of a pictorial-struc-
tures score map is shown in Figure 4(c). The figure illustrates 
that incorporating prior knowledge on the typical structure of 
canvas greatly improves the performance of the thread-crossing 
model. The final thread-crossing detections are obtained by 
applying nonmaxima suppression on the score map. Nonmaxima 
suppression finds local maxima in the score map that are above a 
predefined threshold .x  An example of the resulting thread-
crossing detections is shown in Figure 4(d). While some detec-
tion errors are present, the result in Figure 4(d) illustrates that 
the majority of thread-crossings and neighborhood relations is 
correctly identified. 

estimating thread distances
After detecting the thread crossings, we need to identify which 
crossings are the warp and weft “neighbors” to be able to measure 
the distance between two weft threads or two warp threads at that 

(a) (b)

(c) (d)

[FIG4] an illustration of our canvas analysis algorithm: (a) a small patch of canvas taken from Poussin’s triumph of Bacchus, (b) the 
response of our thread crossing classifier on the patch of canvas, (c) the response of our model after incorporating the pictorial-
structures model that exploit canvas regularity, and (d) the final thread-crossing detections and the identified neighbor relations 
between these detections. In the response images, a brighter color corresponds to a higher likelihood of a thread crossing being 
present in the canvas (according to our model). In (d), detected thread crossings are indicated by red crossings. the blue lines indicate 
the detected neighbor relations: to construct distance maps, distances that were measured between all neighboring thread crossings 
(i.e., over all blue lines). at locations where blue lines are absent, the distances are interpolated from neighboring thread crossings. 
(Figure is best viewed in color.) 
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location. To this end, we center an anisotropic Gaussian distribu-
tion at each thread crossing location that has much more variance 
in either the warp or the weft direction (depending on whether we 
want to measure interweft or interwarp distances). The resulting 
density map tends to follow the direction of the threads in the can-
vas. The density maps may be further improved by rotating the 
Gaussians according to the estimated orientation of the threads at 
each location to become more robust to cusping, but for simplic-
ity, we omit that in this study. To determine the neighbor of a 
thread crossing, we perform a large number of random walks that 
emanate from the thread crossing under investigation and termi-
nate at the next thread crossing we encounter. The random walks 
are forced to go in a “forward” or 
“backward” direction, while using 
the density map to determine 
whether or not to move in the direc-
tion perpendicular to the thread. We 
construct a histogram over neigh-
bor candidates that counts how 
often a random walk terminated in 
each thread crossing, and we select 
the crossing that has the highest 
count as the final neighbor candi-
date. The process is performed both 
in the “forward” and in the “back-
ward” direction, and a neighborhood relation is only accepted if 
both thread crossings pick each other as neighbor to eliminate any 
inconsistencies (i.e., when the neighborhood relation is recipro-
cal). The detected thread-crossing relations are indicated by blue 

lines in Figure 4(d). Finally, we estimate interthread distances on 
all locations where the thread identification procedure has a high 
confidence, while interpolating in low-confidence regions of the 
canvas and removing small outliers using a median filter. In a sim-
ilar manner, we can measure the orientation of the thread connec-
tions to produce a thread orientation map. An example of the 
resulting distance and orientation maps (for both warp and weft 
threads) is shown in Figure 5. 

matching thread distance maps
To identify potential matches between different canvases based on 
the thread distance maps, we adopt an approach similar to that 

described by [17]. Specifically, we 
extract a small band of the distance 
map and take the median along this 
band (in the direction of the threads) 
to obtain an estimate of the thread dis-
tance signal. The thread distance sig-
nal is convolved with a Gaussian 
kernel to remove very fine-grained 
structure: empirically, we found 
matching is more accurate when per-
formed based on features in the thread 
distance signal that live on a coarser 
scale. We match the thread-distance 

signals of two canvases by sliding one signal over the other (enforc-
ing a minimum overlap), while measuring the mean absolute dis-
tance between the signals in the overlapping region. We use mean 
average distance as it is less sensitive to outliers than squared 

(a) (b) (c)

[FIG5] an illustration of the results of our canvas analysis algorithm on nicolas Poussin’s triumph of Bacchus: (a) spacing between warp 
threads, (b) spacing between the weft threads, and (c) orientation of the warp threads. In the spacing maps, a blue color corresponds 
to a small distance between threads, while a red color corresponds to a large distance between threads. For the warp threads, thread 
spacings range between 1.2 and 1.9 mm, while for weft threads, thread spacings range between 0.8 and 1.45 mm. the warp 
orientation map shows strong cusping on the top and bottom, caused by the deformation of the canvas as it is placed on the stretcer. 
(Figure is best viewed in color.)

We shoW the MerIts oF  
thread-LeveL Canvas  

anaLysIs by usInG It to  
study a CoLLeCtIon oF  
three aLLeGed nICoLas  
PoussIn PaIntInGs as  

WeLL as a sMaLL CoLLeCtIon  
oF PaIntInGs by  

vInCent van GoGh.
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errors. The match is repeated for a flip of one of the thread signals 
as one of the canvases may have been “upside down” compared to 
the other. A match is only accepted if one of the two minimum 
mean average distances is a below a certain threshold. 

exPerIMent 1: nICoLas PoussIn
We used our canvas-analysis algorithm to study a collection of 
three Nicolas Poussin paintings that 
were studied before by [9]: 1) Tri-
umph of Pan, 2) Triumph of Bac-
chus, and 3) Triumph of Silenus. 
This set of paintings is of particular 
art-historical interest because the 
three paintings were part of single 
commissioning in 1636 to Cardinal 
de Richelieu for the Cabinet du Roi in 
his castle in Poitou, France. Their 
authenticity has been subject to 
strong debate: some have considered Bacchus to be a copy [18], 
[19], but most Poussin scholars now believe that Bacchus and Pan 
are authentic Poussin paintings. Silenus, however, is considered to 
be an early copy by its owners, the National Gallery London (Pous-
sin’s Bacchanals quickly became very popular, with the first copies 
being produced as early as 1665. For instance, at least seven 
known copies of Bacchus exist today). Recent canvas analysis 
results have challenged this belief by finding a canvas match 
between all three Triumph-paintings but were inconclusive 
because they were unable to perform thread-level canvas analysis. 
We obtained digital versions of radiographs (scanned at 600 dpi, 
500 dpi, and 1,200 dpi for Triumph of Pan, Triumph of Bacchus, 
and Triumph of Silenus, respectively) and stitched them into 
whole-painting radiographs using algorithms described in [20]. 
Thereafter we manually annotated a total of 11,954 thread 

crossings in these radiographs and trained our thread-crossing 
detector on these manually annotated positive examples (negative 
examples were sampled randomly from the same radiographs). 

We set the value of the L2-regularization parameter in the 
logistic regression, ,2v  by performing a grid search guided by 
the classification error on a small held-out validation set. The 
error of our model on the validation set was approximately 9%; 

most of these errors were likely due 
to the set of negative examples con-
taining some actual thread cross-
ings by chance. The average thread 
distance parameters dx  and dy  
were estimated by running the 
entire canvas-analysis procedure 
without the pictorial structures and 
taking the median interthread dis-
tance in the warp and weft direc-
tion. The nonmaxima suppression 

step used a window size of 5 5#  pixels, and a threshold .0 4x =  
(on a scale from zero to one). The final thread distance maps 
were cleansed with a 7 3#  or 3 7#  median filter (depending 
on the orientations of the threads being analyzed). For weft 
maps, we removed distance values below 0.85 mm and above 
1.45 mm from the map, while for warp maps, we removed dis-
tance values below 1.2 mm and above 1.9 mm. 

Figure 5 presents the results of our analysis of Triumph of 
Bacchus. Figure 6 presents the results produced by our thread-
level canvas analysis algorithm after matching the three Poussin 
paintings. Different colors correspond to different spacings 
between individual threads. The results presented in the figure 
provide very strong evidence that all three canvases originated 
from the same roll. The results are in line with earlier results 
from automatic and manual canvas analyses of these three 

thread-CrossInG deteCtIon  
Can be PerForMed WIth  

very hIGh aCCuraCy  
beCause thread  

CrossInG CorresPonds to  
vIsuaLLy saLIent LoCatIons  

In Canvas radIoGraPhs.

Triumph of Pan Triumph of Silenus Triumph of Bacchus

[FIG6] the results of our thread-level canvas analysis of the three triumph paintings. different colors indicate the distance between 
(detected) neighboring thread crossings. (the figure is best viewed in color.)



 IEEE SIGNAL PROCESSING MAGAZINE [44] juLy 2015

paintings [9] but provide stronger evidence because the evidence 
is on the level of individual threads and not on the level of multi-
ple-thread averages. Indeed, the presented results make it highly 
unlikely that Silenus was copied 30 years later in a different loca-
tion (Poussin was working in Rome, Italy, whereas a copyist likely 
would have worked in France), which strongly suggests that the 
current art-historical description of the three paintings needs to 
be revised. We leave such art-historical interpretations to other 
scholars; they are outside the scope of this work. 

exPerIMent 2: vInCent van GoGh
We also performed analyses of a small collection of paintings by 
Vincent van Gogh. Unlike the canvases of 17th-century Poussin, 
19th-century van Gogh used canvas produced by the textile indus-
try that has much finer threads and smaller irregularities in thread 
spacing [10]. Moreover, because van Gogh applies very thick paint 
layers, the thread structure is much harder to see in the X-rays. As 
a result, thread-level canvas analysis of van Gogh paintings is sub-
stantially harder than the analysis of Poussin paintings. 

A large collection of roughly 180 van Gogh paintings has been 
studied intensively in the context of the Thread Count Automation 
Project [10], the goal of which is to assign all van Gogh paintings 
to a particular roll, as this may provide information on the order 
in which van Gogh made his paintings. 

For this study, we had access to a small collection of ten 
radiographs van Gogh paintings that were scanned at 600 dpi: 

 ■ F402 Two White Butterflies
 ■ F482 Bedroom in Arles 
 ■ F490 Mother Roulin with Her Baby
 ■ F511 Orchard in Blossom
 ■ F633 The Good Samaritan 
 ■ F692 The Thresher 
 ■ F699 The Shepherdess 
 ■ F720 Enclosed Wheat Field with Rising Sun 
 ■ F734 The Garden of Saint-Paul Hospital
 ■ F822 The Cows. 

(The F-numbers are the catalogue numbers used by the van 
Gogh Museum in Amsterdam, The Netherlands). Some of the 
ten canvases are surmised to originate from the same roll but 
the results of current analyses are inconclusive. Our analysis 
results in a group of at least four matching canvases, as illus-
trated in Figure 7. An extensive study on all 180 van Gogh paint-
ings [10] is planned for a future work. 

ConCLusIons and outLooK
We have presented a novel canvas-analysis approach that is able 
to perform thread-level analyses of canvas. We believe the 
method has two main advantages over prior work: 1) it provides 
more conclusive evidence on whether or not two patches of can-
vas have the same thread patterns and 2) it is easier for art 
experts to understand exactly what is being measured. We believe 
the second advantage is essential to get canvas-analysis 

F402 F482 F490 F699

[FIG7] an illustration of canvas weave matches between four van Gogh paintings: 1) F402 two White Butterflies, 2) F482 Bedroom in 
arles, 3) F490 mother roulin with her Baby, and 4) F699 shepherdess (after millet). different colors indicate the distance between 
(detected) neighboring thread crossings. In white regions, hardly any thread crossings were detected because the crossing signal was 
obfuscated by thick paint layers; these regions were ignored in the thread spacing measurements. (the figure is best viewed in color.)
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technology widely used: showing art experts visualizations such 
as those in Figure 4 allows art experts to understand the analysis 
process, to identify potential errors in the measurements, and to 
manually correct such errors when desired, and to assess 
whether thread spacings are a good surrogate for thread thick-
nesses for the canvas a hand. 

A substantial drawback of the proposed approach is that a 
trained thread-crossing detection model is likely only applicable to 
canvas of a similar type that was imaged under similar conditions: 
for instance, models trained on the Poussin paintings do not work 
well on the van Gogh paintings because van Gogh’s canvases have 
much finer threads, which results in a different visual appearance of 
thread crossings. This implies that to apply our approach to a new 
type of canvas, it may be necessary to manually annotate a few hun-
dred thread crossings for that canvas type. To resolve this problem, 
it would be very useful to establish a database with a large collection 
of canvas radiographs along with a crowdsourcing annotation tool. 
Such a database would not only facilitate systematic comparisons 
between canvas-analysis algorithms, but it would also allow for 
training thread-crossing detectors that can be applied to a wide vari-
ety of canvas types. Similar data-gathering and annotation efforts 
have proven instrumental in improving the state of the art in other 
computer-vision problems, such as object recognition [21]. 
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