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a b s t r a c t

The Allen Brain Atlases enable the study of spatially resolved, genome-wide gene expression patterns across
the mammalian brain. Several explorative studies have applied linear dimensionality reduction methods
such as Principal Component Analysis (PCA) and classical Multi-Dimensional Scaling (cMDS) to gain insight
into the spatial organization of these expression patterns. In this paper, we describe a non-linear embedding
technique called Barnes-Hut Stochastic Neighbor Embedding (BH-SNE) that emphasizes the local similarity
structure of high-dimensional data points. By applying BH-SNE to the gene expression data from the Allen
Brain Atlases, we demonstrate the consistency of the 2D, non-linear embedding of the sagittal and coronal
mouse brain atlases, and across 6 human brains. In addition, we quantitatively show that BH-SNE maps are
superior in their separation of neuroanatomical regions in comparison to PCA and cMDS. Finally, we assess
the effect of higher-order principal components on the global structure of the BH-SNE similarity maps.
Based on our observations, we conclude that BH-SNE maps with or without prior dimensionality reduction
(based on PCA) provide comprehensive and intuitive insights in both the local and global spatial transcrip-
tome structure of the human and mouse Allen Brain Atlases.
! 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The mammalian brain is a complex system governing all high-
level cognitive tasks. The complexity of this system is reflected in
the large number of cell types, organized into hundreds of distinct
structures [1]. A major challenge facing the neuroscience commu-
nity is to collect, integrate and analyze data across different levels
and scales to produce new insights about the brain’s anatomical
and functional organization [2]. At the molecular level, each brain
structure has a specific cellular composition with a distinct gene
expression signature that dictates its functional role [3]. Therefore,
to understand the basic anatomical and functional organization of

the brain in relation to gene functions, it is crucial to study the spa-
tial localization of genome-wide gene expressions in the brain.

Given the high cellular diversity in the brain, mapping genes at a
sufficient spatial resolution is essential to analyze the transcrip-
tome architecture of the brain. Several studies have previously
mapped the expression of genes across the mammalian brain, but
they have all been limited either in terms of the number of genes
analyzed and/or the number of brain structures assessed [4,5].
The Allen Institute for Brain Sciences provides comprehensive gen-
ome-wide maps of gene expression across the mouse and human
brain, providing a unique opportunity to study the transcriptome
architecture of the mammalian brain. In the Mouse Brain Atlas [6]
the expression of!20,000 genes at a cellular resolution using in situ
hybridization (ISH) is mapped on an anatomical atlas of the mouse
brain. Comparably, the Human Brain Atlas [7] employed micro-
arrays to produce a genome-wide map of transcript distribution
across the entire human brain. These two resources allow the
unprecedented study of how the transcriptome architecture of dif-
ferent brain regions instructs their functional role.

The high diversity of spatially-mapped gene expression
patterns in the brain, ranging from globally-expressed genes to
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highly-specialized regional markers, poses great challenges for
computational approaches. Univariate approaches involving the
analysis of the expression profiles of few genes of interest using
prior knowledge of their site of action in the brain are not suitable
to capture the full complexity of the data. In order to capture the
complex patterns of expression of thousands of genes across the
entire brain (thousands of samples), multivariate approaches
should be employed to accommodate the high-dimensionality of
the data. However, visualizing high-dimensional data for intuitive
interpretation is challenging.

Several studies have used Principal Component Analysis (PCA)
or classical Multidimensional Scaling (cMDS) to reduce the dimen-
sionality of the voxel level genome-wide gene expression data of
the mouse brain [7–9]. These low-dimensional maps are then used
either to enable visual exploration of the gene expression patterns
or as an input to a clustering algorithm where the resulting clusters
are compared to the classical neuroanatomy. Classical methods
such as PCA and cMDS focus on appropriately modeling large pair-
wise distances between gene expression profiles [10]. The focus on
modeling large pairwise distances comes at the price of substantial
errors in modeling small pairwise distances. However, it is exactly
this local similarity structure that is essential in clustering and
visual exploration: the goal of clustering is to find groups of nearby
data points and, similarly, the goal of visual exploration is gener-
ally to determine which parts of the data are similar to a reference
data point [11]. Therefore, we advocate to employ embedding
techniques that focus on preserving local similarity structure, as
is done by techniques such as t-Distributed Stochastic Neighbor
Embedding (t-SNE) [12]. Since its introduction in 2008, t-SNE has
been proven to outperform linear dimensionality reduction meth-
ods, but also non-linear embedding methods such as ISOMAP [13],
in several research fields including machine-learning benchmark
datasets and hyper-spectral remote sensing data [14].

Recently, t-SNE has been employed to analyze high dimensional
proteomic and genomic data. Shekhar et al. [15] used t-SNE to dif-
ferentiate between cellular phenotypes of the immune system
based on mass cytometry data. Ji [16] used t-SNE to analyze the
relationship between gene expressions and neuroanatomy in the
developing mouse brain showing that t-SNE is able to capture
the local similarities in the high-dimensional space. Fonville et al.
[17] have shown that t-SNE outperforms PCA and self-organizing
maps when used for modeling of mass spectrometry imaging data,
where each pixel represents a molecular mass spectrum. All the
previously mentioned applications demonstrate the high potential
of t-SNE in the visual analysis of high-dimensional molecular data.

The goal of this work is to explore the effectiveness and limita-
tions of t-SNE for spatial mapping of gene expression patterns in
both the mouse and the human Allen Brain Atlases. By applying
Barnes-Hut-SNE (BH-SNE) [22], a recently developed optimization
algorithm for t-SNE, we show the consistency of the low dimen-
sional embedding across the 6 human brains as well as between
the sagittal and coronal experiments of the mouse brain. In addi-
tion, we quantitatively show the superiority of BH-SNE over PCA
and cMDS in separating neuroanatomical regions in the low-
dimensional 2D embeddings. Finally, we assess the effect of
higher-order principal components on the local and global struc-
ture of the spatial transcriptome similarity maps.

2. Materials and methods

2.1. Mouse brain gene expression

The Allen Mouse Brain Atlas [6,18] provides genome-wide cel-
lular-resolution in situ hybridization (ISH) gene expression data
for approximately 20,000 genes of the 8-week old adult C57BL/6 J

male mouse brain. For each gene, sagittal ISH sections were
sampled at 25 lm intervals across the entire brain and the
high-resolution 2D image series from each experiment were recon-
structed in 3D and registered to the Nissl stain-based reference
atlas (Allen Reference Atlas). The data were then aggregated into
isotropic voxels defined by a uniform 200 lm grid in the reference
space by averaging the expression levels and densities of all pixels
(in the high-resolution ISH sections) within each voxel. The ontol-
ogy of the reference atlas is used to label individual voxels with
their anatomical nomenclature. In addition, coronal sections are
available for a set of approximately 4000 genes that showed
marked regional expression patterns in the sagittal plane [3]. More
information about the ISH sections alignment and registration to
the Allen Reference Atlas can be found in [19].

We retrieved all expression energy volumes from [18] using the
Allen Brain Atlas application programming interface (API). Expres-
sion energy is a measurement combining the expression level (the
integrated amount of signal within each voxel) and the expression
density (the amount of expressing cells within each voxel) [20].

We focused our analysis on a subset of high confidence genes
for which coronal and sagittal experiments are available, as in
[8]. For each gene, we computed the Spearman’s rank correlation
between the corresponding coronal and sagittal experiments and
selected genes in the top-three quartiles of correlation (3241
genes). The coronal and sagittal experiments corresponding to
those 3241 genes were retained for further analysis (Supplemen-
tary Table 1). For genes with more than one sagittal experiment,
the maximum correlation value was used. A mask was applied
to exclude all non-brain voxels, resulting in a 61,164 " 3241
(voxels " genes) matrix for the coronal experiments and a
27,365 " 3241 matrix for the sagittal experiments.

2.2. Human brain gene expression

The Allen Human Brain Atlas [7,21] includes RNA microarray
data collected from the postmortem brains of six donors, with no
known neuropsychiatric or neuropathological history; see Table 1
for detailed information about the donors. Magnetic resonance
(MR) T1-weighted (T1W), T2-weighted (T2W) and Diffusion Tensor
(DT) images were collected in-cranio, prior to dissection for ana-
tomic visualization of each brain.

Approximately 1000 samples were dissected using manual
macrodissection for large regions and laser captured microdissec-
tion for smaller regions from two donor brains (H0351.2001 and
H0351.2002), representing all structures across the whole brain.
For the other four donor brains, approximately 500 samples were
taken from one hemisphere only. Each sample is associated with
a 3D (x, y, z) coordinate on its corresponding donor’s MRI volume.
Moreover, the MNI coordinates of each sample is reported (regis-
tration to the MNI reference space was done using FreeSurfer soft-
ware). The dataset contained expression profiles of 29,191 genes
represented by 58,692 probes, with 93% of known genes repre-
sented by at least 2 probes. The data was already normalized
across samples and across different brains using the procedure

Table 1
Human donors information.

Donor ID Number
of samples

Sex Age (years) Race/ethnicity

H0351.2001 946 Male 24 African American
H0351.2002 893 Male 39 African American
H0351.1009 363 Male 57 Caucasian
H0351.1012 529 Male 31 Caucasian
H0351.1015 470 Female 49 Hispanic
H0351.1016 501 Male 55 Caucasian
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explained in [22]. Probes with no Entrez ID or gene symbol were
excluded and the expression profiles of all the probes representing
one gene were averaged, resulting in 20,737 genes (Supplementary
Table 2).

2.3. Cell type markers

Lists of cell-type specific genes were extracted from a previ-
ously published work by Cahoy et al. [23] who profiled gene
expression patterns in purified populations of neurons, astrocytes,
and oligodendrocytes using microarrays. We selected genes
enriched by at least 10-fold in one cell type, compared to the
two other cell types, out of the 3241 high-confidence genes
included in our analysis, resulting in 195 neuron-specific, 60 astro-
cyte-specific, and 43 oligodendrocyte-specific genes in the mouse
data (Supplementary Table 3). Using the same 10-fold enrichment
threshold for the human data resulted in 247 neuron-specific, 151
astrocyte-specific, and 92 oligodendrocyte-specific human ortholo-
gous genes (Supplementary Table 4).

2.4. Non-linear dimensionality reduction

Three different multivariate data analysis methods were used to
visualize the high dimensional expression data, namely: Barnes-
Hut-SNE (see Section 3), Principal Component Analysis (PCA) and
classical Multi-Dimensional Scaling (cMDS). For the mouse data,
the expression profile of each gene, i.e. column of the voxel " gene
expression matrix, was Z-score normalized across all voxels. The
human brain expression data was already Z-score normalized
[22]. PCA was applied to the expression matrices (voxel " gene
for the mouse data and sample " gene for the human data). The
human data was also analyzed with cMDS. The first two compo-
nents of PCA and the first two dimensions of cMDS were used to
visualize the data in each case. The goodness-of-fit criterion for
cMDS was the stress, normalized by the sum of squares of the
inter-point distances [24]. Distances within cMDS between two
samples s1 and s2 were computed as genetic distances:

dðs1; s2Þ ¼ ð1& qðs1; s2Þ2Þ
1=2

, where qðs1; s2Þ denotes the correlation
between gene expression levels.

For the non-linear dimensionality reduction using Barnes-Hut-
SNE (BH-SNE), we used the full data dimensionality and mapped
it to a 2D BH-SNE plot. In addition, we assessed the effect of prior
dimensionality reduction using PCA in order to reduce noise in the
final maps. The data was first mapped either to the first 2, 3, 5, 10,
or 20 components and then embedded into 2D BH-SNE maps.

2.5. Regional gene expression visualization

For both the mouse and the human data, the mapped data
points (voxels or samples) were colored in the low-dimensional
2D map according to their associated reference atlas ontology
colors, as obtained from the mouse and human atlases [6,7]
(Supplementary Tables 5 and 6). This ontology was colorized so
that each brain structure has a unique color and anatomically
related structures (e.g., substructures of the hypothalamus) are
coded with similar colors.

To visually analyze the ability of the different methods (BH-
SNE, PCA, and MDS) to segment different regions of the mouse
brain, the data points (voxels) were colored by spanning an
‘‘L⁄a⁄b⁄’’ color map [25], that maps the a⁄ and b⁄ colormap axes
to the horizontal and vertical axes of the PCA, cMDS and BH-SNE
maps. The L⁄a⁄b⁄ color space was selected because it spans all
perceivable colors and the a⁄ and b⁄ axes span a two-dimensional
space with all perceivable colors at a constant perceived

‘‘lightness’’ L⁄ that is perceptually linear. L⁄ was fixed at 50 for all
plots providing a good color contrast in the 2D maps.

Using the MNI152 coordinates associated with each of the
human brain samples, we mapped each sample back to the Colin27
human brain atlas [26]. Direct visualization of these samples is,
however, hampered by the spatial sparsity of the data, i.e. there
are very few samples per anatomical regions. Therefore, we colored
each voxel in the brain where there is no sample available (no gene
expression data) according to the closest sampled voxel based on
the Euclidean distance between the unsampled voxels and the
sampled voxel.

2.6. Evaluation of the mapped data

To evaluate the capability of each of the dimensionality reduc-
tion methods to separate different brain regions, we analyzed the
separation between different brain-region clusters in the low-
dimensional 2D maps produced by these methods. The separation
between two brain structures can be characterized by the similar-
ity of the distributions of the data points belonging to each region
in the low-dimensional space. In this work we use the Jensen–
Shannon divergence [27] to compute this similarity. Briefly, for
each brain structure, a 2D histogram is computed by calculating
the density of the data points belonging to that structure in the
2D map. This is achieved by overlaying a 40 " 40 rectangular grid
that covers all the samples in the low dimensional space. The
divergence between the two histograms (distributions) of two
brain structures P and Q is then calculated as: JSDðPjjQÞ ¼
1
2 KLðPjjMÞ þ 1

2 KLðQ jjMÞ, where KLðPjjQÞ ¼
P

i–jpij log pij
qij

is the

Kullback–Leibler divergence between P and Q, and M ¼ 1
2 ðP þ QÞ.

By using the same grid size (the same number of bins), divergences
between brain regions are comparable between the different
dimensionality reduction methods regardless of their scaling fac-
tor. For the mouse data, divergence scores were calculated
between: cortex (Isocortex), olfactory areas (OLF), hippocampal
formation (HPF), cortical subplate (CTXsp), striatum (STR), palla-
dium (PAL), cerebellum (CB), thalamus (TH), hypothalamus (HY),
midbrain (MB), pons (P), and medulla (MY). In the human atlas,
divergences were calculated between: frontal lobe (FL), parietal
lobe (PL), temporal lobe (TL), occipital lobe (OL), hippocampal for-
mation (HiF), striatum (Str), Globus pallidus (Gp), amygdala (Amg),
thalamus (TH), hypothalamus (Hy), mesencephalon (MES), Pons,
myelencephalon (MY), cerebellum (Cb), and white matter (WM).

3. Theory

3.1. Barnes-Hut-SNE (BH-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) [12] con-
structs a two-dimensional scatter plot in which each point repre-
sents a gene expression profile. In such a t-SNE map, nearby
points correspond to similar profiles, whereas distant points corre-
spond to dissimilar profiles. The map is constructed by (1) measur-
ing similarities between gene expression profiles and (2) moving
points around in the map in such a way as to minimize some dif-
ference measure between similarities of points in the map and
the corresponding gene-expression profile similarities.

Mathematically, t-SNE operates by converting the gene expres-
sion profiles into a probability distribution over pairs of profiles in
such a way, that similar pairs have a high probability of being
picked. The distribution is defined as a standard Gaussian kernel
(with a particular choice for r2) that is normalized to sum to
one. Next, t-SNE constructs a map in which each point corresponds
to an expression profile by: (1) defining a similar distribution over
the pairs of points in the map, and (2) minimizing the divergence
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between the two distributions with respect to the coordinates of
the points in the map using gradient descent. Mathematically, for
a given sample t-SNE defines pairwise similarities between gene
expression profiles x 2 RD (with D the number of genes) as:

pij ¼
expð&jjxi & xjjj2=2r2Þ

P
k–l expð&kxk & xljj2=2r2Þ

where pij is the similarity between the expression profiles xi and xj

in the high dimensional space RD. Likewise, the similarity between
the corresponding low-dimensional models of these genes y 2 Rd

(with d the dimensionality of the t-SNE map) is defined as:

qij ¼
ð1þ jjyi & yjjj

2Þ
&1

P
k–lð1þ jjyk & yljj

2Þ
&1

where qij is the similarity between the expression profiles yi and yj

in the low dimensional space Rd. In the definition of map similarity,
a heavy-tailed Student-t distribution is used to measure similarity
in the map to account for the large difference in volume between
the high-dimensional gene expression space and the low-dimen-
sional map. The low-dimensional map fy1; . . . ; yNg, with N the num-
ber of gene expression profiles, is learned by minimizing the
Kullback–Leibler divergence between both distributions:

KLðPjjQÞ ¼
X

i–j
pij log

pij

qij

The asymmetry of the Kullback–Leibler divergence encourages
modeling large P-values (similar expression profile) by large Q-val-
ues (nearby points). As a result, in contrast to techniques like PCA,
t-SNE focuses on appropriately modeling the local gene expression
profile structure in the map.

The gradient that is used for learning a t-SNE map can be inter-
preted as an N-body system [28]: each point in the map exerts a
force onto all other points, and the gradient for each point is the
resultant force on that point (i.e. the sum of all incoming forces).
Specifically, the gradient on point yi comprises springs between
yi and all other points, where the force in a spring depends on
the difference between the corresponding P-values and Q-values.
The gradient computes the resultant force on map point yi in this
spring system:

@KL
@yi
¼ 4

X
j–i
ðpij & qijÞð1þ jjyi & yjjj

2Þ
&1
ðyi & yjÞ

The interpretation of t-SNE as an N-body simulation facilitates
the use of approximation techniques that were originally devel-
oped in astronomy to simulate large galaxies of stars, such as the
Barnes-Hut approximation [29] or fast multipole approximations
[30]. We focus on the Barnes-Hut approximation [28]2, which
exploits the fact that a group of nearby map points exerts very sim-
ilar forces on another point that is relatively far away. Therefore, the
(resultant) force exerted on the latter point can be approximated by
the force between the center-of-mass of the group of points and the
point under consideration, multiplied by the number of points in the
group. In practice, this is implemented by storing all points in a
quadtree (for 2D maps) or octree (for 3D maps) and performing a
depth-first tree search on this tree, pruning away nodes for which
the aforementioned approximation can be used. The resulting algo-
rithm has an average-case complexity of O(N log N). For more details,
we refer to [28].

4. Results and discussion

4.1. Genetic similarity within the mouse brain

We used BH-SNE to embed the mouse coronal expression data
in a 2D space, see Fig. 1a. In order to reduce the noise in the data,
we first reduced the data dimensionality by mapping the data on
the first 10 principal components and then used the reduced data
as an input to BH-SNE. The BH-SNE mapped data show that ana-
tomical regions are in many cases in disjoint and visually distinct
clusters. By comparison, Fig. 1d plots the reduced data when only
PCA is being used, showing that then samples of the same anatom-
ical region are close but no clear clustering and regional separation
is visible. This difference between BH-SNE and PCA is also reflected
in Fig. 1b and e, where the borders between anatomical regions
seem sharper with coloring based on BH-SNE. In Fig. 1b for exam-
ple the hippocampal formation (in red) and cerebral nuclei (in light
blue) can be easily distinguished. More strikingly, the transversal
views in Fig. 1b shows that within the deeper brain structures
there is a clear difference between medial gene expression (green)
and posterior gene expression (pink). The first 2 principal compo-
nents do not pick up on this variation and suggest a strong similar-
ity (Fig. 1e). To quantify these observations, Fig. 1f shows the
Jensen–Shannon divergence between classical anatomical regions
in both the first two principal components and the two-dimen-
sional BH-SNE. A lower divergence value indicates that the map
suggests higher similarity between the corresponding brain
regions in the 2D map. In general, BH-SNE yields much higher
divergence values between pairs of anatomical regions compared
to PCA. Particularly, the cortex (Isocortex) and the hippocampus
(HPF) are not separable in the PCA map, that is why they both
retain the same color (pink) in Fig. 1e. This high similarity between
the cortex and hippocampus is also reflected with a low divergence
value in Fig. 1f. On the other hand, BH-SNE can clearly separate the
cortex and the hippocampus giving them different colors in Fig. 1b
and resulting in a high divergence value in Fig. 1c.

Adding more PCA components in the BH-SNE preprocessing
step increases the information available to the BH-SNE algorithm
and thereby influences the separation of neuroanatomical regions
in the embedded map. To study the effect of PCA preprocessing
step on the BH-SNE mapping we varied the number of principal
components. Fig. 2 shows the BH-SNE plots and the L⁄a⁄b⁄ map-
pings to the mouse brain (transversal sections) using a range of
components to reduce the dimensionality of the data before apply-
ing BH-SNE. When using a small number of components (5 or less),
insufficient information is retained to achieve good separation
between different brain regions. This is visible from the mixing
of samples from the same anatomical region in the BH-SNE maps
and in the axial brain slices by ragged edges (Fig. 2a and b, e.g., yel-
low, blue and green clusters). By increasing the number of compo-
nents to 5 or 10, BH-SNE produces much better results as seen by
clear separation between voxels belonging to different brain struc-
tures (Fig. 2c and d). When we further increased the number of
components (20 or more), the clusters of voxels belonging to one
brain structure started to break into smaller sub-clusters. This is
particularly clear in Fig. 2f (BH-SNE without prior dimension
reduction). These sub-clusters seem to be formed by voxels
belonging to different coronal planes, visible when the points in
the BH-SNE map are projected back to the mouse brain (Fig. 2f,
lower panel). When the BH-SNE map is colored according to the
coronal plane from which the data was extracted, the observed
sub-clusters could indeed be attributed to the different coronal
planes (Fig. 2g). Since the gene expression data was generated
using ISH if coronal section of the mouse brain, we can reason that
by including more components BH-SNE starts to pick up inter-slice2 A variant of t-SNE based on fast multipole methods is presented in [31].
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differences. Neighboring voxels within the same brain structure
and within the same slice have a more similar expression profile
than neighboring voxels within the same brain structure but in dif-
ferent coronal slices. This leads to the fragmentation of brain
region clusters into smaller, within-slice clusters, and hence the
visible color gradient over the coronal brain slices (Fig. 2f).

Ko et al. [9] demonstrated that k-means clustering on cell-type
specific genes reveals that neuron-specific genes show the most
neuroanatomically similar pattern across the mouse brain. To
explore if cell type composition gives rise to the expression differ-
ences that separate anatomical regions, we performed BH-SNE on
cell type marking genes only. Fig. 3 shows the BH-SNE mappings
for three disjoint sets of genes. The neuron-specific genes yield
the highest separation between neuroanatomical regions
(Fig. 3a). In order to quantify the ability of different gene sets to
partition neuroantomy we use the Jensen–Shannon divergence
plot. The neuron-specific gene set leads to stronger separation of
the cortex (Isocortex), olfactory area (OLF), hippocampus (HPF),
and the cortical subplate (CTXsp) as well as between the thalamus
(TH) and the hypothalamus (HY), indicated by higher divergence
values (lighter color) in Fig. 3d–f. Overall oligodendrocyte-specific
genes show the weakest separation between classical anatomical
regions, although all gene sets give clear distinctions between cor-
tex and non-cortex areas. This confirms the observations reported
in [9] on k-means clustering based on expression of cell-type spe-
cific genes.

The BH-SNE analysis was also performed on the sagittal data,
which spans a smaller volume of interest than the coronal data
(27,365 voxels compared to 61,164). This map (in Fig. 4a and b)
is highly comparable to that of the coronal experiments, with
especially clear distinctions between cerebral nuclei (medium

blue) and cerebral cortex (orange). In this case, selecting fewer
principal components for the BH-SNE initialization does not lead
to slicing effects as observed in the coronal samples, but it does
emphasize within-slice similarities which are visible by a
smoother color transitions in Fig. 4c.

4.2. Genome wide gene expression similarity within the human brain

In the human brain atlas platform paper, Hawrylycz et al. [7]
used PCA and cMDS mappings to show that the transcriptional
relationships between cortical samples mimic the spatial topogra-
phy of the cortex. To visualize the anatomical organization of the
high-dimensional expression data through the entire adult human
brain, we mapped the data to a 2D map using BH-SNE without
prior dimensionality reduction. By mapping the expression data
of each of the six brains separately, we observed that BH-SNE is
able to map the samples with clear clustering of samples belonging
to the same anatomical region, see Fig. 5. Particularly, the cortex
(red, yellow and brown samples) and the cerebellum (light blue)
are clearly separated from all other brain regions across the six
brains, indicating that both regions have distinct expression pro-
files from the rest of the brain. Moreover, the thalamus (light
green), hippocampus (ochre) and the caudate nucleus and puta-
men (purple) are consistently close to each other in the low dimen-
sional space, indicating that the expression profiles of these
regions are more similar to each other than to other regions of
the brain. Remarkably, the caudate nucleus and putamen are
clustered, while the third organ of the basal ganglia, the globus pal-
lidus, has a separate cluster. The relationships between samples in
the low-dimensional space are very consistent across the six
brains, suggesting a global organization of the human brain

Fig. 1. Coronal mouse brain transcriptome similarities. (a) BH-SNE map of the mouse coronal data initialized with 10 principal components and colored by anatomical region
labels from the Allen Reference Atlas: cortex (Isocortex), olfactory areas (OLF), hippocampal formation (HPF), cortical subplate (CTXsp), striatum (STR), palladium (PAL),
cerebellum (CB), thalamus (TH), hypothalamus (HY), midbrain (MB), pons (P), and medulla (MY). (b) The mouse coronal data mapped back to the 3D volume of the mouse
atlas (3 views) and colored by the L⁄a⁄b⁄ colormap of the BH-SNE mapping at a constant L⁄ value. (c) Divergence plot for BH-SNE showing the similarity between pairs of
neuroanatomical regions. A higher divergence value (lighter colors) indicates better separation between a pair of neuroanatomical regions in the 2D BH-SNE map. (d) The first
two PCA components of the mouse coronal data colored by anatomical region labels from the Allen Reference Atlas. (e) The mouse coronal data mapped back to the 3D
volume of the mouse atlas (3 views) and colored by the L⁄a⁄b⁄ colormap of the PCA mapping. (f) Divergence plot for PCA showing the similarity between pairs of
neuroanatomical regions. A higher divergence value (lighter colors) indicates better separation between a pair of neuroanatomical regions in the 2D PCA map.
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transcriptome across individuals. It is worth noting that BH-SNE
optimizes the pair-wise distances between pairs of data points,
but not the absolute location of each data point in the 2D map.
Therefore, when analyzing the maps in Fig. 5, one should consider
the relative distances between samples from different neuroana-
tomical regions rather than the absolute geometric location within
the map.

To compare the similarity of the expression profiles of different
brain regions to the classical neuroanatomy, we compared the
L⁄a⁄b⁄ colors of the BH-SNE mapping to the original structural
labels on the MNI152 atlas for Donor H0351.2001 and Donor
H0351.2002, from whom both hemispheres were sampled in the
ABA. In Fig. 6, the differences between cortical, cerebellar, and
brain stem samples are clearly visible. However, we could not
identify differences between the frontal, medial, and anterior
regions of the cortex in the t-SNE map. On the other hand, regions
surrounding the ventricles clearly differ from the adjacent brain
regions and there are no clear differences within the brainstem.
These maps reveal the global symmetry between hemispheres in
regional gene expression that was also reported in [7].

To gain insight into the effect of cell-type specific genes on the
mapping, we inspected embeddings of human brain samples when
creating the maps using only the expression profiles of cell-type

specific genes. Similar to our observation from the mouse data,
neuron-specific genes encode better separability between anatom-
ical regions (Fig. 7a) with a BH-SNE map very similar to the BH-SNE
map obtained using the entire set of genes. Furthermore, astrocyte-
specific genes resulted in a more separable map compared to oligo-
dendrocyte-specific genes (Fig. 7b and c). In all three mappings,
there is a strong overlap between the frontal lobe (FL), temporal
lobe (TL), occipital lobe (OL), and parietal lobe (PL) (Fig. 7d–f),
which was also visible in the brain maps in Fig. 6. It is also worth
noting that the overall differences between the cell-type specific
maps are much smaller in the human data that the corresponding
maps in the mouse data (Fig. 3).

We then pooled all the samples from the six brains and mapped
them to the low-dimensional 2D space using BH-SNE (with prior
dimensionality reduction to 10 principal components), PCA, and
cMDS. The BH-SNE map of the concatenated data resembled those
of the individual donors to a large extent, with samples from the
cortex and the cerebellum clearly separated from samples in the
rest of the brain, see Fig. 8. Again, BH-SNE (Fig. 8a) retains a better
separation between samples belonging to different anatomical
regions as compared to PCA (Fig. 8b) and cMDS (Fig. 8c). For PCA,
the overlap between the cerebellum (light blue) and the cortex
(red, yellow and brown) can be resolved when the 3rd component

Fig. 2. BH-SNE maps the mouse coronal data using different initializations. BH-SNA mappings of the mouse coronal data using (a) 2, (b) 3, (c) 5, (d) 10 and (e) 20 principal
components to reduce the dimensionality of the data before applying BH-SNE. (f) BH-SNE mapping of the mouse coronal data without any prior dimensionality reduction. BH-
SNE maps are colored by anatomical region labels from the Allen Reference Atlas. Axial sections of the mouse 3D atlas space are colored with the corresponding L⁄a⁄b colors of
each voxel in the BH-SNE maps. (g) BH-SNE mapping of the mouse coronal data without any prior dimensionality reduction, colored by the corresponding coronal plane.
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is taken into account. Within the cerebellum, none of the three
methods could separate frontal (FL), temporal (TL), occipital (OL)
and parietal lobes (PL), consistent with our findings from individ-
ual brains (Fig. 7). This further supports the superiority of
BH-SNE to retain variations in higher components in the 2D space.
Separation between donors becomes apparent in BH-SNE (Fig. 8d),
which is much less apparent in PCA and cMDS. In order to quantify
the separation between different anatomical structures in the low
dimensional space, we computed the Jensen–Shannon divergences
between the regions; see Fig. 8g–i. The divergence plots show
clearly that the BH-SNE map has higher divergence values, hence
retaining a better separation between all neuroanatomical regions
followed by PCA and subsequently cMDS. The sensitivity of BH-SNE
is also demonstrated by its ability to distinguish samples from dif-
ferent donors. Fig. 8a and d show different clusters per brain region
and per donor. In the PCA and cMDS mappings, samples from
different donors are fully mixed.

In Fig. 2f, we have shown that by retaining more PCA compo-
nents, one can separate the mouse expression data based on
inter-slice differences. To analyze the effect of retaining more

PCA components prior to the BH-SNE embedding in the human
brain, we gradually increased the number of principal components
used to initialize the BH-SNE mapping. Fig. 9 (top row) shows that
by increasing the number of principal components, i.e. increasing
the data dimensionality, before applying BH-SNE, samples belong-
ing to the same anatomical structure, but to different donors, start
to deviate from each other. When colored according to the source
brain, Fig. 9 (bottom row), deviations in the BH-SNE maps appear
to reflect differences between brains only when more components
are used in the prior dimensionality reduction. At 5 components
(Fig. 9c) we start to observe a separation of the samples from
H0351.2001 brain regions (red) and H0351.2002 brain regions
(yellow) from the other samples, especially in the cortical and cer-
ebellar regions. The other four brains (H0351.2009, H0351.2012,
H0351.2015, and H0351.2016) become clearly separated when
much higher components are included (20 components, Fig. 9e).
However, BH-SNE is still able to maintain the separation between
different anatomical structures even when higher components
are added, but at the costs that each brain region in each donor
then forms its own cluster. The clustering in anatomy related

Fig. 3. BH-SNE embeddings of cell-type specific genes in the mouse coronal data. (a) neuron-specific, (b) astrocyte-specific, and (c) oligodendrocyte-specific gene sets based
BH-SNE embeddings, colored by anatomical region labels from the Allen Reference Atlas. (d–f) Divergence plots of the BH-SNE embeddings using (d) neuron-specific, (e)
astrocyte-specific, and (f) oligodendrocyte-specific gene sets. A higher divergence value (lighter colors) indicates better separation between a pair of neuroanatomical regions
in the 2D BH-SNE map.

Fig. 4. BH-SNE maps of the mouse sagittal data. (a) BH-SNE map of the mouse sagittal data using 10 principal components for the initial dimensionality reduction and colored
by anatomical region labels from the Allen Reference Atlas. (b) Mapping of the BH-SNE embedding back to the 3D volume of the mouse atlas (3 views), colored by the L⁄a⁄b⁄

colormap of the BH-SNE embedding. (c) Mapping of the BH-SNE embedding using the high dimensional sagittal data without prior dimensionality reduction.
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Fig. 5. Genome-wide gene expression similarity within six human brains. BH-SNE maps of the expression data for each of the six human brain donors individually without
prior dimensionality reduction by PCA. (a) Donor H0351.2001. (b) Donor H0351.2002. (c) Donor H0351.2009. (d) Donor H0351.2012. (e) Donor H0351.2015. (f) Donor
H0351.2016. BH-SNE maps are colored by anatomical region labels from the Allen Reference Atlas: frontal lobe (FL), parietal lobe (PL), temporal lobe (TL), occipital lobe (OL),
hippocampal formation (HiF), striatum (Str), Globus pallidus (Gp), amygdala (Amg), thalamus (TH), hypothalamus (Hy), mesencephalon (MES), Pons, myelencephalon (MY),
cerebellum (Cb), and white matter (WM). Note the higher density in (a) and (b) is due to the larger number of samples.

Fig. 6. Anatomical view on the genome-wide gene expression similarity within two human brains. BH-SNE maps of the expression data without prior dimensionality
reduction by PCA, (a) colored by anatomical region labels from the Allen Reference Atlas (see legend) and (b) colored by the L⁄a⁄b⁄ colormap. (c) Transverse, (d) sagittal, and
(e) coronal views of the brain colored according to the L⁄a⁄b⁄ colors of the samples in the BH-SNE maps. Top row: Anatomical labels from the ABA projected on the full brain.
Middle row: The brain of H0351.2001. Bottom row: The brain of H0351.2002. Note the clear separation of the cerebellum and brain stem in (b) as well as that the global
preservation of the symmetry in regional gene expression between hemispheres in (c and e).
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Fig. 7. BH-SNE mappings of the human brain based on cell-type specific genes. BH-SNE embeddings of samples from donor H0351.2002 using (a) neuron-specific, (b)
astrocyte-specific, and (c) oligodendrocyte-specific gene sets, colored by anatomical region labels from the Allen Reference Atlas. (d–f) Divergence plots of the BH-SNE
embeddings using (d) neuron-specific, (e) astrocyte-specific, and (f) oligodendrocyte-specific gene sets. A higher divergence value (lighter colors) indicates better separation
between a pair of neuroanatomical regions in the 2D BH-SNE map.

Fig. 8. Linear and non-linear embeddings of the human brain transcriptome. (a) BH-SNE using 10 principal components for prior dimensionality reduction, (b) PCA, and (c)
cMDS embeddings of the aggregated gene expression data of the six human brains. Maps a–c are colored by anatomical region labels from the Allen Reference Atlas, maps d–f
are colored by donor. (g–i) Jensen–Shannon divergence plots between neuroanatomical regions for BH-SNE, PCA and cMDS, respectively.
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clusters for a low number of retained components shows that the
variations in normalized gene expression levels between brain
regions are dominant over the variations between donors.

5. Conclusions

We have explored the effectiveness of using t-Distributed Sto-
chastic Neighbor Embedding (t-SNE) to assess the spatial organiza-
tion of genome-wide expression data across the mammalian brain.
We have used Barnes-Hut-SNE (BH-SNE), a recently developed,
computationally efficient t-SNE optimization algorithm, to map
the large volumes of data in the mouse and human Allen Brain
Atlases. Our results show that the mapped gene-expression data
is highly consistent between the coronal and sagittal mouse atlases
as well as between the six human brain datasets, with the cortex
and cerebellum always being the most distinct from other brain
regions. Additionally, the BH-SNE maps of the human brain show
clear expression symmetry between hemispheres. The separation
of neuroanatomical regions in the BH-SNE embedding is better
than the separation in the PCA and MDS embeddings, further sup-
porting the need for non-linear embedding methods to capture the
complex organization of the Allen Brain Atlas data. We have
employed the Jensen–Shannon divergence to quantify the ability
of different gene sets and different embedding methods to map
brain samples in 2D while preserving the known neuroanatomy.
Additionally, we studied the effect of keeping more PCA compo-
nents prior to the BH-SNE mapping. Due to its emphasis on local
structures, BH-SNE is sensitive to having more PCA components
as input, even when they may encode for non-anatomical informa-
tion such as inter-slice differences in the coronal mouse data and
different donor brains in the human data. These results suggest
that to map high-dimensional spatial transcriptome data to a
two dimensional space, a combination of a linear PCA mapping
followed by a non-linear BH-SNE mapping gives the best tradeoff
between preserving local and global structure in one 2D map.
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