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1. Introduction

This document contains all supplemental material for the
paper “Training Convolutional Networks on Large Weakly
Supervised Data”. The supplemental material contains six
sections: (1) details on the overlap between the CUB200-
2011 Birds dataset and the Imagenet ILSVRC2014 dataset;
(2) a plot of the word frequency distribution in the Flickr
100M dataset; (3) a section with additional details on the
bounds for the approximate multi-class logistic loss of Sec-
tion 3 in the main paper; (4) additional details on the exper-
imental setup of the transfer learning experiments; (5) addi-
tional results of the transfer-learning experiments, compris-
ing all vocabulary sizes; and (6) high-resolution versions of
the t-SNE maps presented in the paper.

2. Dataset Overlap

The images in the CUB200-2011 Birds dataset and the
Imagenet ILSVRC2014 dataset were partly gathered from
the same data sources, such as Wikipedia and Google Image
Search. As a result, we expect that there are near duplicates
present in these datasets (and possibly also in other datasets
that gathered images from these sources). This is problem-
atic, as it means that in transfer learning experiments such
as those in [0], some of the images used for testing may
in fact also have been used in the training of the feature-
production networks—this may lead us to overestimate the
performance of such transfer-learning systems.

To investigate the extent of the dataset overlap, we iden-
tified near duplicates we use features computed using the
quantization procedure from Gong et al. [?] and compute an
Hamming distance between pairs of images. We then rank
these candidate near-duplicate pairs according to this dis-
tance. The 8 image pairs with the smallest pairwise distance
are shown in Figure I. We manually inspected the 500 im-
age pairs with the smallest pairwise distance, and counted
how many of these image pairs appear to be true dupli-
cates. Using this simple approach, we identified that at least
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Figure 1. The 8 image pairs with the smallest pairwise distance
between the fest set of CUB200-2011 Birds and train set of Im-
agenet ILSVRC2014. We use the Hamming distance on features
computed using the quantization procedure from Gong et al. [2]

24 images in the fest set of CUB200-2011 Birds dataset
are also present in the frain set of Imagenet ILSVRC2014
dataset, i.e. 5% of the images we tested. While our pipeline
is imperfect, this number illustrates the danger of evaluating
transfer learning across manually annotated datasets gath-
ered from the same source.

3. Flickr 100M Word Frequency

Figure 2 shows the word frequency of the 100, 000 most
common words in the Flickr 100M dataset as a log-log plot:
the y-axis shows the log-rank of the words when ranked
according to their frequency and the x-axis shows the corre-
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Figure 2. Log-count of words in the Flickr 100M dataset as a func-

tion of their log-rank, when words are ranked according to their

frequency. The log-log plot is linear, which illustrates that the
word frequency distribution is Zipfian.

sponding log-count of the words. The log-log plot is nearly
linear, which shows that the word frequencies in the Flickr
100M dataset are, indeed, Zipfian.

4. Bounding the Approximate
Multiclass Logistic Loss

This section describes the bounds on the approximate
multiclass logistic loss in which the loss is applied only on
randomly selected subset of classes in more detail. Our aim
is to bound the logistic loss:
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where we denote sj, = exp (W f(x,;6)). When we ran-
domly sample a subset classes C (with |C| < K) from the set
of all K classes, only the partition function Z = Zszl Sk
changes. Hence, to bound the multiclass logistic loss, we
only need to bound the log-partition function. An upper
bound on the log-partition function can trivially be obtained
by observing that each element in the sum over K is posi-
tive and that log(-) is a monotonically increasing function:
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This bound implies that by randomly subsampling
classes, we will never overestimate the loss.

To lower-bound the loss, we first assume that Vk : s, >
1. This assumption can always be satisfied by adding a con-
stant to the term inside the exponential in sg; this does not
change the final loss because the constant is divided out in
the loss:

Because we assumed that Vk : s, > 1, we also know
that Z > 1 and thus that log(Z) > 0. The positivity of the
log-partition function allows us to use Markov’s inequality,
which states that for any positive random variable z:
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Invoking Markov’s inequality on the function ¢(x) —
log(z) and setting a = A\Z, we obtain:
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If we have some knowledge on the distribution of s, we
can use this to set A to make the bound as tight as possible.
For example, if we assume a uniform distribution over sy,
then A = % is a good candidate, producing the bound:
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This bound is particularly interesting because it directly
relates the average value of s. as measured over the set C
to its expected value (indeed, E[s;,] =  Z). Also note that
the bound becomes exact as C' — K.
Using the same setting for A but assuming that sy is
Gaussian distributed, we obtain:
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In this case (and ignoring some constants), the lower
bound is at least half of the value of the true loss. Both of
these bounds suggest that the approximate loss is, indeed,
closely related to the true loss (over all K classes) we wish
to optimize. Note that tighter bounds could be obtained by
picking ) as a function of Z (since Z is fixed), but, this goes
beyond the scope of this paper.

5. Setup of Transfer Learning Experiments

Below, we describe the experimental setup of our
transfer-learning experiments for each dataset separately.
MIT Indoor. The MIT Indoor dataset contains 15, 620 im-
ages of indoor scenes, comprising a total of 67 categories
[5]. The classes are imbalanced, but each class has at least
100 images. The dataset has a fixed subdivision into 80%
training images and 20% test images, which we did not use
in our experiments. Instead, we performed all experiments
via 10-fold cross-validation, using 90% of the images as
training and 10% as test data in each run. We measure the
accuracy of predicting a class for an image.

MIT SUN. The MIT SUN dataset is a scene dataset; we use
the SUN397 release of the dataset, which contains a total of
108, 754 that comprise 397 categories [¢]. All our experi-
ments measure classification accuracy, and were performed
using 10-fold cross-validation.

Stanford 40 Actions. The Stanford 40 Actions dataset con-
tains images of humans performing 40 different actions [“].
The dataset has a total of 9, 532 images, and there are be-
tween 180 and 300 images per action type. Again, we per-
formed experiments using 10-fold cross-validation, measur-
ing classification accuracy.

Oxford Flowers. The Oxford Flowers dataset is a fine-
grained classification contains images of 102 different types
of flowers [4]. Each dataset contains a total of 8, 189 im-
ages, and each class has between 40 and 258 images. Our
experiments were performed using 10-fold cross-validation,
measuring classification accuracy.

Sports. The Sports dataset contains 300 images of peo-
ple performing one of 6 different sports actions: “tennis-
forehand”, “tennis-serve”, ‘“volleyball-smash”, “cricket-
defensive shot”, “cricket-bowling”, and “croquet-shot” [3].
The classes in this dataset are balanced, and classification
accuracies were measured using 10-fold cross-validation.
ImageNet ILSVRC 2014. The ImageNet ILSVRC 2014
dataset contains images of 1,000 object classes, many of
which are fine-grained classes such as dog types and bird
types [7]. The data contains a fixed division into a training
set of 1281167 images and a validation set of 50,000 im-
ages. The labels of the test are not publicly available, which
is why we report validation errors in this paper (we report
top-1 classification errors).

Pascal VOC 2007 The Pascal VOC 2007 dataset contains
9,963 that contain a total of 24,640 annotated objects [!].

[Dictionary size [Model [[Indoor | SUN | Action [ Flower [ Sports | ImNet |

1.000 AlexNet 53.19 |42.67| 51.69 | 69.72 | 86.79 | 35.71
i GoogLeNet || 55.56 [44.43| 52.84 | 65.80 | 87.40 | 37.14
o000 M AlexNet || 52.80 [40.16] 49.51 | 68.99 | 88.70 | 34.28 |

? GoogLeNet || 51.4 | 40.6 | 49.52 | 63.57 | 86.96 | 32.02
’170077 oo |4 AlexNet || 5321 [40.21[ 49.42 | 70.64 | 86.96 | 35.38 |
GoogLeNet - - - - - -

Table 1. Classification accuracies on held-out test data of L2-
regularized logistic regressors obtained on six datasets (MIT In-
door, MIT SUN, Stanford 40 Actions, Oxford Flowers, Sports,
and ImageNet) based on feature representations obtained from
convolutional networks trained on the Flickr dataset using K &
{1, 000; 10, 000; 100,000} words and a single crop. Higher val-
ues are better.

The dataset has a fixed split into 50% training and 50% test
data, which we used in all our experiments. As is common
in experiments on the Pascal VOC 2007 dataset, we mea-
sure the average precision (AP) per class; that is, we rank
all images for a particular class and report the area under
the precision-recall curve for that class. We also report the
mean average precision (mAP), averaged over all classes.

6. Additional Transfer Learning Results

Table | presents the classification accuracies we ob-
tained in the transfer learning experiments with our mod-
els for dictionary sizes of K = 1,000, K = 10,000, and
K = 100,000. The results show minor differences be-
tween convolutional networks trained with different dictio-
nary sizes in the case of Alexnet. For Googlenet, we see
a significant change in performance, which may due to the
time, it takes to train such a model on larger dictionaries.
Table 2 shows the performance of Alexnet on the Pascal
VOC 2007 dataset for different dictionary sizes. We ob-
serve that the performance becomes slightly worse as the
size of the dictionary increase. Table 3 shows the perfor-
mance of combined GoogleNet features on the on Pascal
VOC 2007 dataset using 10 transformations and a neural
network classifier with 4,096 hidden units.

Finally, Table 4 shows the difference between the one-
versus-all logistic loss and the multi-class logistic loss on
transfer learning problems. The difference in performance
clearly demonstrates the strong performance of the multi-
class loss.

7. High-Resolution t-SNE Maps

Figure 3 presents a high-resolution version of the image
t-SNE map shown in Figure 4 of the main paper. Figure 3
presents a high-resolution version of the hashtag t-SNE map
shown in Figure 6 of the main paper.
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1,000 84.0 | 722 | 70.2 | 77.0 | 29.5 | 60.8 | 79.3 | 69.5 | 49.2 | 40.5 | 54.0 | 57.1 | 79.2 | 64.6 | 90.2 | 43.0 | 47.5 | 44.1 | 85.0 | 50.7 || 62.4
AlexNet || 10,000 82.21|69.54 | 71.50 | 77.76 | 31.22 | 52.75 | 79.88 | 60.22 | 50.04 | 40.15 | 51.44 | 49.48 | 78.75 | 68.82 | 90.44 | 43.08 | 50.05 | 43.12 | 83.01 | 50.98 | 61.22
100, 000 79.98 | 67.76 | 69.80 | 73.64 | 24.15 | 61.55 | 77.87 | 57.36 | 47.52 | 43.20 | 51.28 | 49.32 | 76.98 | 66.07 | 90.36 | 42.53 | 51.32 | 43.21 | 82.55 | 48.00 || 60.22

Table 2. Pascal VOC 2007 dataset: Average precision (AP) per class and mean average precision (mAP) of classifiers trained on features
extracted with networks trained on Flickr dataset using K € {1, 000; 10,000; 100,000} words. Higher values are better.

i [ [ 6 [ § [ 0| 4 [P &M sk 5| 2 [ i5] B[]

[Combined GoogLeNet [[ 93.07 [90.07 [ 91.43 [ 88.78 [ 52.95 | 85.89 [ 89.58 [ 89.65 [ 60.95[ 79.66 [ 76.11 | 89.9 [91.34[88.27 [ 89.14 [ 60.42[83.99 [ 68.29 [ 91.83 | 78.89 [[82.01 |

Table 3. Pascal VOC 2007 dataset: Average precision (AP) per class and mean average precision (mAP) for combined GoogLeNet using
10 transformations and a neural network classifier with 4096 hidden units.
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Figure 3. t-SNE map of 20, 000 Flickr test images based on features extracted from the last layer of an AlexNet trained with a dictionary
of size K =1,000. Zoom in on the PDF for more detailed views.
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Figure 4. t-SNE map of 10, 000 words based on their embeddings as learned by a weakly supervised convolutional network trained on the

Flickr dataset. Zoom in on the PDF for more detailed views.



