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1 Introduction

The mixture of Bernoulli distributions [6] is a technique that is frequently used for the modeling of
binary random vectors. They differ from (restricted) Boltzmann Machines in that they do not model
the marginal distribution over the binary data space X as a product of (conditional) Bernoulli distribu-
tions, but as a weighted sum of Bernoulli distributions. Despite the non-identifiability of the mixture
of Bernoulli distributions [3], it has been successfully used to, e.g., dichotomous perceptual decision
making [1], text classification [7], and word categorization [4].

Mixtures of Bernoulli distributions are typically trained using an expectation-maximization (EM)
algorithm, i.e. by performing maximum likelihood estimation. In this report, we develop a Gibbs
sampler for a fully Bayesian variant of the Bernoulli mixture, in which (conjugate) priors are introduced
over both the mixing proportions and over the parameters of the Bernoulli distributions. We develop both
a finite Bayesian Bernoulli mixture (using a Dirichlet prior over the latent class assignment variables)
and an infinite Bernoulli mixture (using a Dirichlet Process prior). We perform experiments in which we
compare the performance of the Bayesian Bernoulli mixtures with that of a standard Bernoulli mixture
and a Restricted Boltzmann Machine on a task in which the (unobserved) bottom half of a handwritten
digit needs to be predicted from the (observed) top half of that digit.

The outline of this report is as follows. Section 2 describes the generative model of the Bayesian
Bernoulli mixture. Section 3 described how inference is performed in this model using a collapsed Gibbs
sampler. Section 4 extends the Bayesian Bernoulli mixture to an infinite mixture model, and described
the requires collapsed Gibbs sampler. Section 6 presents the setup and results of our experiments on a
handwritten digit prediction task.

2 Generative model

A Bayesian mixture of Bernoulli distributions models a distribution over a D-dimensional binary space
X . The generative model of the Bayesian Bernoulli mixture is shown graphically in Figure 1.

The generative model for generating a point x is given below:

p(π|α) = Dirichlet(π| α
K
, . . . ,

α

K
), (1)

where α is a hyperparameter of the Dirichlet prior, the so-called concentration parameter1. The vector
π is a K-vector describing the mixing weights, where K is the number of mixture components (in the
case of the infinite mixture model, K →∞).

p(z|π) = Discrete(z|π), (2)

where z is a K-vector describing the class assignment (note that zk ∈ {0, 1} and
∑

k zk = 1).

p(ak|β, γ) = Beta(ak|β, γ), (3)
1For simplicity, we assume a symmetric Dirichlet prior, i.e. we assume ∀k : αk = α/K.
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Figure 1: Generative model of infinite mixture of Bernoulli distributions.

where ak is a D-vector, and β and γ are hyperparameters of the Beta-prior.

p(x|{a1, . . . ,aK}, z) =
K∑
k=1

(Bern(x|ak))zk . (4)

Note that our model does not include weakly informative hyperpriors over the hyperparameters, as has
been proposed for, e.g., the infinite mixture of Gaussians [9] or the infinite Hidden Markov Model [2].
We leave such an extension to future work.

The marginal distribution of the model over the data space is given by

p(x) =
∑
z

∫ 1

0
p(x|z,a)

[∫
∆K

p(z|π)p(π|α)dπ

]
p(a|β, γ)da. (5)

3 Inference

As analytically computing the posterior over cluster assignments p(z|x) is intractable, we resort to
using Markov Chain Monte Carlo (MCMC) to do inference in the model. In particular, we derive
the conditionals that are required to run a collapsed Gibbs sampler in the model. We first work out
the integral over the mixing proportions π, and subsequently, work out the integral over the Bernoulli
parameters a. The Gibbs sampler will sample the cluster assignments z.

The joint distribution over the assignment variables z can be obtained by integrating out2 the mixing
proportions π as follows3

p(z1, . . . , zN ) =

∫
∆K

p(z1, . . . , zn|π)p(π)dπ (6)

=
Γ(α)

Γ(α/K)K

∫
∆K

K∏
k=1

[
π

(α/K−1)
k

N∏
n=1

πznkk

]
dπ (7)

=
Γ(α)

Γ(N + α)

K∏
k=1

Γ(Nk + α/K)

Γ(α/K)
, (8)

where Z is a normalization constant, Nk is the number of point assigned to class k, andK is the number
of classes in the model. The conditional distribution of the assignment variable znk for data point n,

2We use the standard Dirichlet integral in this result:
∫

∆K
Dirichlet(x|α)dα =

∫
∆K

∏K
k=1 x

(αk−1)
k dαk =

∏K
k=1 Γ(αk)

Γ(
∑K

k=1
αk)

.
3Throughout the report, we omit the hyperparameters from the notation where possible, in order to prevent the notation

from becoming too cluttered.
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given the other assignment variables for data point n and all other variables, can be obtained from the
above expression by fixing all but one cluster assignment, to give

p(znk = 1|zn−k) =
N−nk + α

K

N − 1 + α
, (9)

where N−nk represents the number of data points assigned to class k, not counting data point n (i.e.,
N−nk =

∑n−1
i=1 zik +

∑N
i=n+1 zik).

The conditional distribution over the Bernoulli parameters akd (akd represents the d-th variable of
ak), given all other parameters, is given by

p(ak|z,D) ∝ p(ak|β, γ)p(D|ak, z) (10)

= Beta(ak|β, γ)

N∏
n=1

(Bern(xn|ak))zk (11)

=
1

Z

D∏
d=1

a(β−1)
kd (1− akd)(γ−1)

∏
n∈Ck

axndkd (1− akd)(1−xnd)

 (12)

=
1

Z

D∏
d=1

[
a

(β−1+
∑
n∈Ck

xnd)

kd (1− akd)
(γ−1+Nk−

∑
n∈Ck

xnd)
]

(13)

=

D∏
d=1

Beta(akd|β +
∑
n∈Ck

xnd, γ +Nk −
∑
n∈Ck

xnd), (14)

where Ck denotes the set of points that were assigned to class k (i.e., all points i for which zik = 1), and
Nk denotes the cardinality of this set.

The conditional distribution is obtained by combining our results from Equation 14 and 9, and
integrating out4 the Bernoulli parameters a as follows

p(znk = 1|zn−k,D) =

∫ 1

0
p(znk = 1|zn−k)p(ak|zn−k,D)dak (15)

=

∫ 1

0

N−nk + α
K

N − 1 + α

 D∏
d=1

Bern(xnd|akd)Beta(akd|β +
∑
i∈Ck

xid, γ +Nk −
∑
i∈Ck

xid)

 dak
(16)

=
N−nk + α

K

N − 1 + α

D∏
d=1

∫ 1

0
Bern(xnd|akd)Beta(akd|β +

∑
i∈Ck

xid, γ +Nk −
∑
i∈Ck

xid)dakd


(17)

=
N−nk + α

K

N − 1 + α

D∏
d=1

1

Znd

[∫ 1

0
a

(xnd+β+
∑
i∈Ck

xid−1)

kd (1− akd)
(−xnd+γ+Nk−

∑
i∈Ck

xid)
dakd

]
(18)

=
N−nk + α

K

N − 1 + α

D∏
d=1

1

Znd
B(xnd + β +

∑
i∈Ck

xid,−xnd + γ +Nk −
∑
i∈Ck

xid + 1),

(19)

where Ck andNk do not include the current data point n, where Znd represents a normalization constant,
and where B(x, y) represents the beta function, i.e., B(x, y) = Γ(x)Γ(y)

Γ(x)+Γ(y) . The normalization term
Znd requires some additional attention, as its presence allows us to sample from the above conditional

4We also use the Beta integral
∫ 1

0
x(m−1)(1− x)(n−1)dx = Γ(m)Γ(n)

Γ(m+n)
.
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distribution without performing the (expensive) computation of beta functions. The normalization term
Znd has the form

Znd = B(β +
∑
i∈Ck

xid, γ +Nk −
∑
i∈Ck

xid). (20)

As a result, the value of the normalized beta evaluation when is
β+

∑
i∈Ck

xid

β+γ+Nk
when xnd = 1, and

γ+Nk−
∑
i∈Ck

xid

β+γ+Nk
when xnd = 0.

We can thus set up a collapsed Gibbs sampler that only samples the cluster assignments by sampling
from the following conditional distribution

p(znk = 1|zn−k,D) =
N−nk + α

K

N − 1 + α

D∏
d=1

[
(β +

∑
i∈Ck xid)

xnd(γ +Nk −
∑

i∈Ck xid)
(1−xnd)

β + γ +Nk

]
. (21)

To prevent numerical problems, it is better to compute the product over the D dimensions in the log-
domain (when D is large).

4 Infinite Bernoulli mixture

In the infinite Bernoulli mixture, the Dirchlet prior in Equation 1 is replaced by a Dirichlet Process

p(π|α) = DP (π|α), (22)

where α is the concentration parameter of the Dirichlet Process. Most of the derivation remains similar,
but the conditional distribution over the class assignment variables (given all other variables) changes
as to reflect the distribution over unrepresented classes. Specifically, the probability of an assignment
variable znk being on [8, 5] is given by

p(znk = 1|zn−k,D) =



N−nk
N − 1 + α

D∏
d=1

[
(β +

∑
i∈Ck xid)

xnd(γ +Nk −
∑

i∈Ck xid)
(1−xnd)

β + γ +Nk

]
, iff k ≤ K+

α

N − 1 + α

[
D∏
d=1

∫ 1

0
Bern(xnd|akd)Beta(akd|β, γ)dakd

]
, iff k = K+ + 1

0, iff k > K+ + 1,
(23)

whereK+ indicates the number of represented classes. The integral in the equation for the unrepresented
class can be worked out as follows:∫ 1

0
Bern(xnd|akd)Beta(akd|β, γ)dakd =

1

B(β, γ)

∫ 1

0
a

(xnd+β−1)
kd (1− akd)(xnd+γ)dakd (24)

=
B(xnd + β, γ − xnd + 1)

B(β, γ)
. (25)

The integral thus has value β
β+γ for xnd = 1, which means that the prior belief that an observed variable

is on under an unrepresented class is β
β+γ . The value for xnd = 0 is γ

β+γ .

5 Predictive distribution

At each state of the Gibbs sampler, the predictive distribution comprises two parts: a part corresponding
to the represented classes and a part corresponding to the unrepresented classes (in the finite mixture the
second part is empty). Denoting the query-part of x by xq and the non-query part by x−q, the predictive
distribution we are interested in is given by

p(x−q|xq) =
∑
z

∫
p(x−q|z,a)

p(xq|z,a)

[∫
p(z|π)p(π|α)dπ

]
p(a|β, γ)da. (26)
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After every iteration of Gibbs sampling, we obtain a sample z(s) (and corresponding counts Nk), which
can be used to infer the Bernoulli parameters a(s)

k as follows

a
(s)
k =

∑N
n=1 x

z
(s)
k
n

Nk
. (27)

Using the samples z(s) and the corresponding Bernoulli parameters a(s)
k , the predictive distribution can

be estimated by a factorized approximation

p(x−q|xq) =
∏
i∈−q

1

S

S∑
s=1

 1

N

K+∑
k=1

Nk
p(xi|z(s)

k ,a
(s)
k )

p(xq|z(s)
k ,a

(s)
k )

 . (28)

6 Experiments

To evaluate the performance of Bayesian Bernoulli mixtures, we performed experiments on the USPS
handwritten digit dataset. The USPS dataset consist of 11, 000 binary digit images (1, 100 digits per
class) of size 16× 16 = 256 pixels. We defined a prediction task in which the model has to predict the
bottom half of a digit, given the top half of that digit. In our experiments, we compare the performance of
Bayesian Bernoulli mixtures with those made by (1) Bernoulli mixtures trained using the EM algorithm
and (2) Restricted Boltzmann Machines (RBMs) trained using contrastive divergence.

We performed experiments on each digit class separately. In each experiment, we randomly select
1, 000 images (of the same class) as training data, and used the remaining 100 images as test data. The
bottom 8 rows of each test image are not presented to the models; these 8× 16 = 128 pixels have to be
predicted, given the top 128 pixels. As the models output a probability that a pixel is on, a natural way
to measure the quality of the prediction is using receiver-operating curves (ROC curves). We use the
area under the ROC curve (AUC) as evaluation criterion for the predictions. We repeat each experiment
10 times (for each digit class) to reduce the variance in our AUC estimates.

The standard (non-Bayesian) Bernoulli mixtures were trained by running the EM algorithm for 50.
The predictions from the standard Bernoulli mixture were obtained by (1) computing the responsibilities
of the test image under each of the mixture components based on the top half of the image and (2) com-
puting a weighted sum of the bottom half of each of the mixture components, using the responsibilities
as weights.

The Restricted Boltzmann Machines (RBMs) were trained using 30 iterations of contrastive diver-
gence. At the start of the training, we use a single Gibbs sweep for contrastive divergence (CD-1).
During the training, the number of Gibbs sweeps is slowly increased to 9 (CD-9). We also experi-
mented with sparsity priors on the hidden unit states (which makes RBMs behave more like mixture
models), but we did not find this to improve the performance of the RBMs. To predict the bottom half
of each digit while observing only the top half of the digit, we employed the exact factorized predictive
distribution that is described in [10].

The predictions from the Bayesian Bernoulli mixture were obtained by performing Gibbs sampling
with 100 sweeps, and computing a prediction for the model at then end of the Gibbs chain (using the
same approach as for the non-Bayesian Bernoulli mixtures5). This process is repeated 30 times, and
the 30 resulting predictions are averaged to obtain the final prediction. We set the hyperparameters to
α = 50, β = 1

2 , and γ = 1
2 . For the infinite Bernoulli mixture, we used the same hyperparameters.

The mean AUCs that were recorded during our experiments are presented in Table 1. The table
presents results for all digit classes, and for different values of the number of components K. The
results presented in the table reveal the merits of using a fully Bayesian approach to Bernoulli mixture
modeling: the Bayesian mixtures outperform their non-Bayesian counterparts in all experiments. Also,
somewhat surprisingly, the Bernoulli mixtures appear to outperform the RBMs.

Some examples of the predictions produced by a standard Bernoulli mixture, an RBM, and a
Bayesian Bernoulli mixture (all with K = 50) are shown in Figure 2. In the figure, a brighter pixel

5For the infinite mixture model, we ignore the contribution of the non-represented classes when making a prediction.
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K Digit 1 Digit 2 Digit 3 Digit 4 Digit 5 Digit 6 Digit 7 Digit 8 Digit 9 Digit 0
BM K = 10 0.9682 0.7725 0.8242 0.8193 0.8413 0.7988 0.8965 0.8059 0.8513 0.9069
BM K = 20 0.9436 0.7728 0.7989 0.8316 0.8414 0.8007 0.8941 0.8100 0.8682 0.9179
BM K = 30 0.9559 0.7748 0.7961 0.8246 0.8344 0.7929 0.9015 0.8068 0.8732 0.9113
BM K = 40 0.9503 0.7473 0.7857 0.8144 0.8320 0.7936 0.8819 0.8153 0.8572 0.9073
BM K = 50 0.9602 0.7636 0.8064 0.8232 0.8252 0.7980 0.8950 0.8047 0.8752 0.9093
BBM K = 10 0.9727 0.7847 0.8585 0.8423 0.8622 0.7797 0.8999 0.8196 0.8739 0.9300
BBM K = 20 0.9741 0.7893 0.8650 0.8632 0.8624 0.7960 0.9142 0.8293 0.8896 0.9350
BBM K = 30 0.9743 0.7875 0.8653 0.8658 0.8643 0.7995 0.9167 0.8332 0.8965 0.9347
BBM K = 40 0.9742 0.7938 0.8655 0.8699 0.8656 0.8009 0.9188 0.8356 0.8955 0.9385
BBM K = 50 0.9747 0.7905 0.8695 0.8647 0.8681 0.7999 0.9181 0.8379 0.8973 0.9387
BBM K →∞ 0.9737 0.8030 0.8313 0.8412 0.8425 0.7937 0.8762 0.8162 0.8409 0.9087
RBM K = 10 0.9623 0.7390 0.7764 0.7775 0.7810 0.7767 0.8469 0.7923 0.8263 0.8872
RBM K = 20 0.9541 0.7503 0.7891 0.7829 0.7707 0.7663 0.8693 0.7885 0.8401 0.9010
RBM K = 30 0.9609 0.7371 0.7801 0.7823 0.7653 0.7757 0.8515 0.7949 0.8334 0.9051
RBM K = 40 0.9583 0.7411 0.7787 0.7781 0.7730 0.7524 0.8640 0.7899 0.8419 0.8763
RBM K = 50 0.9559 0.7283 0.7828 0.7807 0.7785 0.7619 0.8686 0.7842 0.8242 0.8966

Table 1: Area under the ROC curve (AUC) for the fill-in task on the USPS digits.

corresponds to a higher probability of that pixel being on. The plots reveal that the Bayesian Bernoulli
mixture produce smoother predictions, resulting in higher AUCs on the prediction task.
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(a) Standard Bernoulli mixture.

(b) Restricted Boltzmann Machine.

(c) Bayesian Bernoulli mixture.

Figure 2: Examples of predictions constructed by a standard Bernoulli mixture, a Restricted Boltzmann
Machine, and a Bayesian Bernoulli mixture (all with K = 50).
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