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Abstract

Models that represent words as points in a semantic space are subject to fundamental
limitations of metric spaces. These limitations prevent semantic space models from
faithfully representing, for example, the pairwise similarities between word meanings
as revealed by word association data. In particular, semantic space models cannot
faithfully represent intransitive pairwise similarities or the similarities of words that
have multiple meanings. In this paper, we present a model that alleviates the limi-
tations of semantic space models by constructing a collection of maps that represent
complementary structure in the similarity data. Our model is a variant of a similar-
ity choice model known as Stochastic Neighbor Embedding that constructs multiple
maps and allows each object to occur as a point in several different maps. We apply
the model to a set of word association data, demonstrating that it can successfully rep-
resent intransitive semantic relations as well as words with multiple meanings, and
that it outperforms traditional semantic space models in the prediction of word asso-
ciations. We compare the model to alternative representations of semantic structure,
such as topic models and semantic networks.
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1 Introduction

Multidimensional scaling [55] is a well-known computational model that represents similar objects, for
instance, words that exhibit a certain semantic similarity, by nearby points in a metric spatial repre-
sentation. Models that use the spatial proximity of two points to represent the similarity between two
objects are often referred to as second-order isomorphic models [11], because they do not aim to model
each object by a representation that has similar properties as the object (i.e., to implement a first-order
isomophism as in, e.g., the recognition-by-components theorem in vision [1]), but instead, they aim to
model the similarity between two objects by the proximity of their two representations. When model-
ing semantic similarities, such second-order isomorphic models are often referred to as semantic space
models [49, 44, 26, 22].

Over the last decade, research on multidimensional scaling models has mainly focused on the de-
velopment of more sophisticated similarity measurements between objects by means of, for example,
geodesic or diffusion distances [21, 54] or by computing Euclidean distances in a (possibly infinite-
dimensional) feature space through the “kernel trick” [46, 19]. However, these approaches do not ad-
dress fundamental limitations of multidimensional scaling models that are due to the characteristics of
metric spaces. A metric space is a space in which the following four metric axioms hold: (1) non-
negativity of distances, (2) identity of indiscernibles, (3) symmetry of distances, and (4) the triangle
inequality. If we denote the distance between object A and object B by d(A,B), the four metric axioms
may be denoted by

d(A,B) ≥ 0, (1)

d(A,B) = 0 iff A = B, (2)

d(A,B) = d(B,A), (3)

d(A,C) ≤ d(A,B) + d(B,C). (4)

The metric axioms give rise to the following three limitations of metric spaces in terms of the similar-
ities they can represent: (1) the triangle inequality that holds in metric spaces induces transitivity of
similarities, (2) in a metric space, the number of points that can have the same point as their nearest
neighbor is limited1, and (3) in a metric space, similarities are symmetric. As a result of these limita-
tions, multidimensional scaling cannot, for instance, faithfully model word association data that does
not obey the metric axioms. We discuss the three limitations of metric spaces and their consequences
for modeling semantic similarities in more detail below.

The first limitation of metric spaces is due to the triangle inequality, which basically states that if
point A is close to point B and B is close to point C, A has to be close to C as well. In practice, this

1This is not the only limitation on the neighborhood relations of points in a metric space. For instance, the maximum
number of equidistant points in a metric space is limited as well.
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constraint may well be violated by the implicit structure of word associations. Consider, for instance,
the word tie, which has a semantic relation with words such as suit and tuxedo. In a low-dimensional
metric map of the input objects, these three words need to be close to each other. However, the word tie
is ambiguous: it also has a semantic relation with words such as rope and knot, and should therefore be
close to these words as well. As a result, the words suit and rope will be modeled fairly close together
in a semantic space even though the words exhibit very little similarity other than their association
with tie. In semantic networks such as Wordnet [12], this problem is circumvented by differentiating
between the different senses of a word, but often it is very difficult to specify the sense of a word. The
word monarchy, for example, would not typically be viewed as ambiguous but it certainly has nuances
of meaning. Associations to this word can relate it to other forms of government or to the pageantry that
surrounds royalty.

The second limitation of a metric space is that only a limited number of points can have the same
point as their nearest neighbor. For instance, in a two-dimensional space, at most five points can have
the same point as their nearest neighbor (by arranging them in a pentagon that is centered on the point).
As a result, a (low-dimensional) metric semantic space cannot faithfully model the large number of
similarities of ‘central’ objects with other objects. This is problematic because word meanings are
characterized by a high ‘centrality’, i.e., by the presence of words that are similar to a large portion of
the other words [56]. The high centrality of semantics can be understood from the properties of semantic
networks, which are scale-free networks that are characterized by a high clustering coefficient [52].
This implies that semantic data is bound to contain central concepts. For instance, large numbers of
mammals have a closer semantic relation with the word mammal than with each other, and as a result,
these mammals would like to have the word mammal as their nearest neighbor in a spatial model. It is
impossible to achieve this in a low-dimensional metric semantic space because only a limited number
of points can have the same nearest neighbor.

The third limitation of metric spaces is that the (dis)similarities in these spaces are symmetric,
whereas the (dis)similarities between entities in the world are often non-symmetric. Tversky illustrated
this problem with a famous example on the similarity between China and North Korea [56]: “People
typically have the intuition that North Korea is more similar to China than China is to North Korea”. The
presumed reason for the asymmetry in human similarity judgements is that a person’s representation of
China typically contains a large number of features, of which only some features are shared with North
Korea, whereas the representation of North Korea involves a small number of features, most of which
are shared with China.

The three limitations of (low-dimensional) metric spaces discussed above lead Tversky to argue
against multidimensional scaling as a model for semantic similarities [56], since its fundamental limita-
tions make it unsuitable for faithfully modeling these similarities. Instead, he advocates the representa-
tion of concepts in terms of sets of features, in which the similarity between concept A and concept B
depends on the relative amount of features that concept A shares with B. Under such a representation,
the asymmetric similarity between, for instance, China and North Korea can appropriately be modeled.

In this paper, we present an alternative solution to the three limitations of semantic space models
by introducing a new variant of multidimensional scaling. Our model has two main differences from
traditional models for multidimensional scaling. Firstly, it converts the pairwise similarities between
objects into conditional probabilities2 and tries to model the objects in the (semantic) space in such a
way that they give rise to a similar set of conditional probabilities. Hence, the second-order isomorphism
is between two conditional probability distributions. Secondly, instead of a using a single metric map to
represent the conditional probabilities, our model employs a collection of maps that together represent
the conditional probabilities. Each object has a corresponding point in every map in the collection, and
each of these points has a “mixing proportion” that indicates its “importance” in each map. The mixing
proportions of all the points corresponding to the same object sum to one. The conditional probability
that represents the similarity of two objects is then modeled by a sum over all maps of the conditional
probability that arises from each map. The conditional probability in a map depends on both the mixing
proportions of the two points in the map and on their proximity. If two points are close together in a map

2Note that for certain types of data, such as word association data, the data already takes the form of such conditional
probabilities.
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in which both points have a high mixing proportion, the multiple map model will assign them a fairly
high joint probability, even if these points are very far apart in some of the other maps. Note that using,
for instance, two two-dimensional maps in this “disjunctive” way is very different from the standard
“conjunctive” approach of using a four-dimensional map and then treating the first two dimensions as
one map and the last two dimensions as another map [41]. In the conjunctive approach, a pair of points
needs to be close together in all of the two-dimensional projections in order to represent high similarity
between the corresponding objects. In the disjunctive approach, by contrast, high similarity in one map
cannot be vetoed by low similarity in another map.

The proposed multiple map model is capable of faithfully representing nonmetric similarities be-
tween objects, such as the strength of associations between words. For example, the word tie can be
close to tuxedo but far from knot in one map, and close to knot but far from tuxedo in another map.
This captures its similarity to both tuxedo and knot without forcing tuxedo to be close to knot. In the
paper, we show that it is possible to learn multiple map representations from observed co-occurence or
association data. We present visualizations of the multiple maps that show how the model is able to,
e.g., identify different senses of words and modeling them in different maps. Also, we show that the use
of multiple maps if beneficial in generalization tasks: a multiple map model is better at predicting word
association than a single map model.

The remainder of the paper consists of five main parts. First, we review an asymmetric variant
of the similarity choice model called ‘Stochastic Neighbor Embedding’ or ‘SNE’ [16] that forms the
basis of our multiple map model. Second, we present the multiple map model, which can be viewed
as a generalization of SNE. Third, we present the results of experiments in which we visualize a large
dataset of word association data. The results demonstrate the potential of multiple maps for semantic
representation and illustrate how they deal with intransitive similarities and objects with high centrality.
Fourth, we present experiments in which we show the benefits of multiple map models for generaliza-
tion: we show that a multiple map model is better at predicting unseen word associations than a single
map model, even when the single map model is allowed to use exponentially more space. Fifth, we
conclude the paper with a discussion of the similarities and differences of the multiple map model with
(i) other semantic space models, (ii) semantic networks, and (iii) topic models [14].

2 Stochastic Neighbor Embedding

Stochastic Neighbor Embedding and its recent extensions [16, 9, 57, 60] are popular multidimensional
scaling techniques that are often used in machine learning to learn low-dimensional data representations
from high-dimensional vectorial data in such a way, that the small pairwise distances between objects
(i.e., the local structure of the high-dimensional data) are preserved as well as possible. Stochastic
Neighbor Embedding can be viewed as an asymmetric variant of the similarity choice model [25, 48,
51, 33].

The input of SNE consists of a collection of N conditional probability distributions Pi that represent
the pairwise similarities between the N input objects. These conditional probability distributions have
entries pj|i that represent, e.g., the probability that object j is associated with object i, or the relative
number of co-occurrences of object j with object i. For instance, word association data is obtained
by measuring how often the word cup (object j) comes to mind after the word coffee (object i) was
presented as stimulus. In learning settings in which the input objects are points in a high-dimensional
space (as is the case in many machine learning applications [2]), the probabilities may be computed by
using a procedure that is based on Shepard’s universal law of generalization [50, 16]. However, we do
not consider such learning settings in this paper.

SNE models the input similarities by giving each of the N objects a location yi in a metric map. The
aim of SNE is to do this in such a way that the pairwise similarities pj|i are modeled as well as possible
in the map. In order to evaluate the pairwise similarities of objects in the map, we define N conditional
probability distributions Qi with respect to the coordinates yi of the objects in the low-dimensional map.
The conditional probability distribution Qi has entries qj|i, which represent the probability of point i
picking point j as its neighbor in the map, thereby measuring the pairwise similarity between the points
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yi and yj . In SNE, the pairwise similarity qj|i is defined3 to be proportional to the density of point yj

under a Gaussian distribution that is centered on point yi

qj|i =
exp

(
−‖yi − yj‖2

)∑
i6=k exp (−‖yi − yk‖2)

, (5)

This definition of the similarity qj|i is basically an implemention of Shepard’s universal law of general-
ization [50]: we assume that the probability that object j is associated with object i decays exponentially
with the squared Euclidean distance between the corresponding points in the space. Alternative moti-
vations for computing qj|i as exponentially decaying with the squared Euclidean distance between the
map points are based on, among others, the maximum-entropy characteristic of the Gaussian distribu-
tion [10] and on the theory of reproducible kernel Hilbert spaces [46]. The latter theory states that the
values pj|i are measurements of inproducts between objects in an infinite-dimensional feature space,
and is covered in detail in [19].

If the map Y = {y1, y2, . . . , yN} appropriately models the pairwise similarities pj|i of the input
objects, all of the conditional probability distributions Pi and Qi are equal. In SNE, such a setting
of the map Y is identified by minimizing the sum of the natural differences between the conditional
probability distributions Pi and Qi, the Kullback-Leibler divergences, with respect to the coordinates yi

of the datapoints in the map. Mathematically, SNE thus minimizes the cost function4

C =
∑

i

KL(Pi||Qi) =
∑

i

∑
j 6=i

pj|i log
pj|i

qj|i
. (6)

The asymmetric nature of the Kullback-Leibler divergence leads SNE to focus on appropriately model-
ing the large pairwise similarities pj|i between the input objects. In other words, similar input objects
really need to be close together in the low-dimensional map in order to minimize the cost function C. In
this respect, SNE differs from traditional classical scaling [55], which as a result of the use of a squared
error criterion mainly focuses on modeling dissimilar input objects as far apart in the map.

The minimization of the SNE cost function is typically performed using a simple gradient descent
method5, the details of which are described in [16]. The gradient of the cost function with respect to the
low-dimensional map coordinates yi is given by

δC

δyi
= 2

∑
j

(pj|i − qj|i + pi|j − qi|j)(yi − yj). (7)

The gradient thus defines a collection of N(N − 1) springs between the points in the map, in which the
stiffness of the spring is given by the discrepancy pj|i − qj|i + pi|j − qi|j between the similarities pj|i
and qj|i. The length and direction of each spring is given by (yi − yj). Minimizing the cost function in
Equation 6 can thus be seen as the minimization of the potential energy in a system of springs, though
the stiffnesses of the springs change on each iteration.

Stochastic Neighbor Embedding and its variants have been shown to outperform existing techniques
for multidimensional scaling [57] such as Sammon mapping [44], Isomap [54], and diffusion maps [21].
Another important advantage of SNE over other approaches to multidimensional scaling is its use of
conditional probability distributions, which makes it a very natural technique to model asymmetric data
such as word associations. These two advantages of SNE, as well as its relation to Shepard’s universal
law of generalization, have led us to select it as the basis for our multiple map model. However, we note
that in principle it is possible to implement the idea of using multiple maps in other multidimensional
scaling techniques as well.

3Throughout the paper, we do not consider self-similarities. We simply assume that pi|i = qi|i = 0.
4Note that since the distributions Pi are fixed, minimizing the sum of Kullback-Leibler divergences

P
i KL(Pi||Qi) is

identical to minimizing the sum of the cross-entropies of Pi and Qi.
5We should note that other optimization procedures have been proposed for SNE, for example, using trust region meth-

ods [31] or simulated annealing [16].
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3 Multiple map SNE

The probabilistic nature of SNE allows for a natural extension to a multiple map version [9], which is
a desirable property that traditional multidimensional scaling techniques do not have. As we will show,
the limitations of metric spaces can be circumvented by the use of multiple maps. We propose a multiple
map version of SNE that constructs a collection of M maps, all of which contain N points (one for each
of the N input objects). In each map with index m, a point with index i has a so-called mixing proportion
π

(m)
i that measures the “importance” of point i in map m. Because of the probabilistic interpretation

of our model, we require the mixing proportions to be positive, and we define the sum of the mixing
proportions of a single point over all maps to be 1. In other words, we constrain the mixing proportions
π

(m)
i to make sure that π

(m)
i ≥ 0,∀i,m and

∑
m π

(m)
i = 1,∀i. We redefine the conditional probability

distribution qj|i, which represents the similarity between the objects with index i and j under the model,
as the weighted sum of the pairwise similarities between the points corresponding to input objects i and
j over all M maps. Mathematically, we redefine qj|i in the multiple map SNE model as

qj|i =

∑
m π

(m)
i π

(m)
j exp

(
−‖y(m)

i − y(m)
j ‖2

)
∑

m′
∑

i6=k π
(m′)
i π

(m′)
k exp

(
‖y(m′)

i − y(m′)
k ‖2

) . (8)

The cost function of the multiple map version of SNE is still given by Equation 6, however, it is now
optimized with respect to the N ×M low-dimensional map points y(m)

i and with respect to the N ×M

mixing proportions π
(m)
i .

Because the mixing proportions π
(m)
i for a single point i should sum to 1 over all maps, direct

optimization of the cost function C with respect to the parameters π
(m)
i is tedious. To circumvent

this problem, we represent the mixing proportions π
(m)
i in terms of “mixing weights” using an idea

that is similar to that of softmax units, which are commonly used in neural networks [5]. The mixing
proportions π

(m)
i are represented in terms of the mixing weights w

(m)
i as follows

π
(m)
i =

e−w
(m)
i∑

m′ e−w
(m′)
i

. (9)

By defining the mixing proportions in this way, they are guaranteed to be positive and to sum up to 1.
As a result, the minimization of the cost function can be performed with respect to the unconstrained
mixture weights w

(m)
i . This significantly simplifies the optimization of the cost function (which is still

given by Equation 6) using gradient descent.
The gradients that are necessary to perform the minimization of the cost function are given in Ap-

pendix A. In our experiments, we used a simple gradient descent method that employs an additional
momentum term to stabilize the gradient search. In other words, the gradient at each iteration is added to
an exponentially decaying sum of the gradients at previous iterations in order to determine the changes
in the parameters at each iteration of the gradient search. The momentum term is employed in order to
speed up the gradient search without creating the oscillations that are caused by simply increasing the
step size. Moreover, we employ an approach called “early exaggeration” [57]: in the early stages of the
optimization, we multiply the conditional probabilities pj|i by, say, 4. As a result, the pj|i’s are much too
large to be appropriately modeled by their corresponding qj|i’s (which still sum up to 1). This encour-
ages the optimization to model the largest pj|i’s by relatively large qj|i’s, thereby creating tight widely
separated clusters in the maps that facilitate the identification of an appropriate global organization of
the maps.

The multiple map model presented above is capable of circumventing the limitations of multidi-
mensional scaling that caused Tversky to reject it as a model for semantic representation. In particular,
the multiple map model has three main advantages over traditional multidimensional scaling models:
(1) it can represent intransitive similarities, (2) it can represent data with high centrality even in low-
dimensional semantic spaces, and (3) it can represent asymmetric similarities. We discuss the three
advantages of the multiple map model separately below.
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Figure 1: Illustration of how multiple map SNE can model intransitive similarities, data with high
centrality, and asymmetric similarities.
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1) Intransitive similarities. Consider our introductory example with the word tie, which is seman-
tically similar to tuxedo and to knot. The word tie should be modeled close to tuxedo and knot, but the
words tuxedo and knot should not be modeled close to each other. In contrast to single map multidimen-
sional scaling techniques, multiple map SNE can appropriately model this example as follows.

Assume we have three datapoints A, B, and C that are embedded into two maps (see Figure 1(a)).
Multiple map SNE can give point A a mixing proportion of 1 in the first map, point B a mixing propor-
tion of 1 in the second map, and point C a mixing proportion of 1

2 in both maps, and it can give all three
points have the same spatial location in both maps. Then, the pairwise similarity between point A and
C is equal to 1 × 1

2 = 1
2 , and the pairwise similarity between point B and C is also equal to 1

2 . How-
ever, the pairwise similarity between point A and B is 0, because the points A and B have no mixing
proportion in each others maps. Hence, the representation constructed by multiple map SNE does not
satisfy the triangle inequality, as a result of which it can model intransitive semantic similarities such as
our example with tie, tuxedo, and knot.

Each time we want to add an object that violates the triangle inequality to an existing map, we need
to put one copy of the object in the existing map and another copy in a different map. This way of using
multiple maps to violate the triangle inequality is not the same as simply using different maps to capture
different topics. If the triangle inequality is violated by three words with the same topic, it is necessary
to put two of them in at least two maps. This leads to many small clusters in each of the multiple maps
and clusters within one map that are not adjacent may have little in common. It would have been nice if
each map captured a different topic, but the cost function does not significantly favor such arrangements
of the words over the maps.

2) High centrality. In a metric space, only a limited number of points can have the same point as
their nearest neighbor, as a result of which it is not possible to model the large number of similarities
of ‘central’ objects with other objects appropriately in a low-dimensional metric map. Data with high
centrality can be modeled appropriately by multiple map SNE even if the dimensionality of the maps is
low, essentially, because multiple maps provide much more space than a single map. We illustrate the
capability of multiple map SNE to model data with high centrality by an example.

Assume we have six objects that all have the same ‘central’ object A as their most similar object. In
a single map, only five of the objects can be modeled in such a way that they have the low-dimensional
model of object A as their nearest neighbor. In contrast, when two maps are available, the data can be
modeled in such a way that the low-dimensional models of the all six objects have the model of object
A as their nearest neighbor, and that these objects are to embedded in two-dimensional map(s). For
instance, this can be achieved by giving A a mixing proportion of 1

2 in both maps, modeling the first
three objects close to the model of object A in the first map with mixing proportion 1, and modeling
the remaining three objects close to the model of object A in the second map with mixing proportion 1.
This example is illustrated in Figure 1(b).

Multiple map SNE can thus successfully model ‘central’ objects, such as the mammal in our intro-
ductory example, even in low-dimensional semantic spaces. Clearly, the number of points that can have
the same point as their nearest neighbor in multiple map SNE depends on the number of maps and on
the dimensionality of these maps.

3) Asymmetric similarities. A metric low-dimensional map constructed by a single map multidi-
mensional scaling technique (such as SNE) cannot appropriately model asymmetric similarities, such
as the similarity between China and North Korea in Tversky’s famous example. In contrast, asymmetric
similarities between objects can be modeled in multiple maps. We illustrate this capability using by
modeling the similarity between China and North-Korea in multiple maps.

Assume (1) that we have two maps, (2) that North Korea has a mixing proportion of 1 in the first
map and a mixing proportion of 0 in the second map, and (3) that China has a mixing proportion of 1

4
in the first map and a mixing proportion of 3

4 in the second map. In addition, assume (4) that North
Korea and China are mapped close to each other in map 1, and (5) that China is modeled close to other
countries in map 2. This example is illustrated in Figure 1(c). In the example, North Korea is modeled
as very similar to China, whereas China is much less similar to North Korea, because it shares a large
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number of features with other countries as well. The actual similarity between China to North Korea
under the model depends on the locations and mixing proportions of the other countries in both maps,
i.e., on the amount of features that China shares with North Korea, relative to the amount of features that
China shares with other countries. Nevertheless, the representation constructed by multiple map SNE
successfully models the asymmetric similarity between China and North Korea.

4 Visualization Experiments

In this section, we present experiments in which we visualize the maps that were learned by the mul-
tiple map model from a large dataset of word associations. Our experiments reveal that the multiple
map model can successfully model the nonmetric structure of the word associations, for instance, by
modeling different senses of the same word in different maps.

4.1 Experimental setup

We performed experiments in which we used the multiple map model to visualize the Florida State
University word association dataset [32]. The dataset contains association data for 10, 617 words, 5, 019
of which were used as input stimuli. The dataset contains a semantic similarity value for each pair
of words that was computed as follows. Human subjects were given a specific word and asked to
name associated words. After normalization, a condition probability pj|i is obtained that measures the
probability that a human subject produces word j in response to word i. The conditional probabilities
pj|i are a natural way to provide input to the multiple map model.

The word association dataset has all three characteristics that make it difficult to visualize the data
using traditional multidimensional scaling approaches. First, it contains numerous examples of intransi-
tive semantic relations, such as our introductory example with tie, tuxedo, and rope. Second, it contains
a number of fairly ‘general’ words that have semantic relations with many other words. The high central-
ity of the Florida State University word association dataset is reflected in the high clustering coefficient
of the data [52]. The most central word in the data is the word field, which has a semantic similarity to
33 other words in the data. Third, the word association data contains numerous examples of asymmetric
similarities. For instance, the word scissors has a similarity of 0.879 with the word cut, whereas the
similarity of cut with scissors is only 0.034.

In our experiments, we construct 40 maps in which we embed the 5, 019 words that were used as
input stimuli in the collection of the data (i.e., the 5, 019 words for which we have the conditional prob-
abilities pj|i). The dimensionality of each map is set to 2. We trained the model using 2, 000 iterations
of gradient descent, in which we employed an additional momentum term. We set the momentum term
to 0.5 during the first 250 iterations, and to 0.8 afterwards. For the learning rate, we employed an adap-
tive learning rate scheme that is commonly applied in the training of neural networks [18]. The adaptive
scheme aims to speed up the optimization by using a different (variable) learning rate for each parameter
in the model. The scheme iteratively increases the learning rate for parameters for which the sign of the
gradient is stable, whereas it rapidly decreases the learning rate when the sign of the gradient changes
on successive weight updates. In our experiments, we set the initial value of the learning rate to 0.1. We
also used early exaggeration with a factor of 4 during the first 50 iterations of the gradient descent.

In preliminary experiments, we found the approach to be fairy robust under changes in the various
optimization parameters. Simpler optimization approaches in which the adaptive learning rate scheme
and early exaggeration are not employed are capable of producing good results as well, but they are
slower and the maps are generally slightly less good.

The transformation of high-dimensional data into two dimensions that happens in visualization often
leads to a problem that is the result of the exponential volume difference between the high-dimensional
and the two dimensional space. This problem is sometimes referred to as the crowding problem, and
it can be alleviated by using a heavy-tailed distribution to measure the similarities between points in a
map [57]. Therefore, in the visualization experiments, we redefine the similarities under the model qj|i
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in such a way that the similarity of two points in a map is measured using a Cauchy distribution

qj|i =

∑
m π

(m)
i π

(m)
j

(
1 + ‖y(m)

i − y(m)
j ‖2

)−1

∑
m′
∑

i6=k π
(m′)
i π

(m′)
k

(
1 + ‖y(m′)

i − y(m′)
k ‖2

)−1 . (10)

This slightly changes the gradients of the cost function, but apart from that, it just like the multiple maps
model proposed in the previous section.

We visualize the 40 word maps by showing them in an annotated scatter plot, in which the size of
a dot represents the mixing proportion of a word in a specific map. To prevent the visualizations from
being too cluttered, datapoints with a mixing proportion below 0.1 were removed from the visualization.
To increase the legibility of the plots, the annotations in the scatter plot were manually aligned to reduce
the overlaps between annotations, while ensuring that word labels are still near their corresponding point
in the map.

4.2 Results

Figure 2 shows 6 of the 40 maps that were constructed the multiple map model. The results reveal that
the maps retain the similarity structure of the association data fairly well6. Because the data contains
too many topics, a single map does not generally visualize a single topic. Instead, most maps reveal
two or three main topics, as well as some very small local structures. For instance, map 2(d) visualizes
the topics sports and clothing, and it shows small local structures that are related to, e.g., the Statue of
Liberty: monument - statue - liberty -freedom.

The results reveal how a multiple map model circumvents the limitations of low-dimensional spaces.
In particular, the model successfully models intransitive associations of words. For instance, the seman-
tic relation of the word tie with words such as suit, tuxedo, and prom is modeled in map 2(a), whereas
in map 2(d), the semantic relation of the word tie with rope and knot is modeled. In addition, map 2(e)
reveals the semantic relation of tie with words such as ribbon and bow. As a second example, the se-
mantic relation of the word cheerleader with various kinds of sports is modeled in map 2(d), whereas
map 2(f) reveals the association of the word cheerleader with words such as gorgeous, beauty, and sexy.
A third example is the word monarchy, which is modeled close to words that are related to royalty such
as king, queen, crown, and royal in map 2(c). In map 2(f), the word monarchy is modeled close to other
governmental forms such as oligarchy, anarchy, democracy, and republic.

The results also reveal how the multiple map model represents asymmetric pairwise similarities.
For instance, map 2(c) reveals that the word dynasty is more often associated with the word China
than the other way around. In map 2(c), the representations of both words are close to one another,
however, the word China has a much smaller mixing proportion than dynasty in map 2(c). As a result,
the denominator of Equation 8 is much higher for the word China than for the word dynasty, which
implies that the word dynasty is closer to the word China under the model than the other way around.

6Please note that the word association data does not exactly capture semantic similarity. For instance, in map 2(f), the word
beauty is shown next to the word beast, revealing the word association that results from a famous Disney movie.
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Figure 2: Results of the multiple map model on the word association dataset (a-b). Because of space
limitations, we only show 6 of the original 40 maps.
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Figure 2: Results of the multiple map model on the word association dataset (c-d). Because of space
limitations, we only show 6 of the original 40 maps.
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Figure 2: Results of the multiple map model on the word association datasets (e-f). Because of space
limitations, we only show 6 of the original 40 maps.
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5 Generalization Experiments

In the previous section, we have shown how multiple map models can exploit the availability of multiple
maps to, for example, model intransitive similarities between semantic concepts. However, these visu-
alization results in themselves do not provide sufficient evidence to suggest their use as a computational
model for semantic representation. In particular, one may argue that many of Tversky’s arguments
against multidimensional scaling can readily be resolved by increasing the dimensionality of the se-
mantic space, or that these arguments are of limited relevance in prediction tasks in which context is
available [14]. Such objections are frequently supported by the successful application of vector space
models in information retrieval [22, 36, 59, 42].

In settings in which contextual clues are not available, such as in word association prediction, these
objections against Tversky’s arguments break down. Indeed, it is possible to model word associations
well in very high-dimensional single map models, but this good performance is likely to be the result of
overfitting. By allowing the semantic space to have a very large number of dimensions, it is possible to
model given word associations appropriately even though the model does not form a good representation
for the underlying process that generates the word associations. Such an overfitted single map model
will perform poorly in generalization tasks, for instance, in a task in which the model has to predict
held-out word associations. In order to investigate the performance of single and multiple map models
in such a generalization task, we performed word association prediction experiments with both types of
models.

5.1 Experimental setup

In the generalization experiments, we randomly divided the Florida State University word association
data into three parts: 80% of the associations is used as training data, 10% is used as validation data,
and 10% of the associations is used as test data. To train the model on the training data while ignoring
the validation and test data, we need to redefine the cost function in such a way that it measures the
error only over the association pairs that are part of the training data. Hence, instead of minimizing
Equation 6 we minimize

C(train) =
∑

i

∑
j 6=i

δ
(train)
ij pj|i log

pj|i

qj|i
, (11)

where δ
(train)
ij is an indicator variable that is 1 if the association between i and j is part of the training

data, and 0 otherwise. Note that in the random selection of the training associations, we make sure that
δ
(train)
ij = δ

(train)
ji . Also note that this redefinition of the pairwise similarities under the model in the

training phase (slightly) changes the gradient of the cost function. In the same way that we redefined the
cost function C(train) for the training data, we can also define the cost function for the test data C(test)

and the cost function for the validation data C(valid). These functions measure the prediction error of
the model.

During the training stage, we minimize C(train) using the same gradient descent method described
earlier, but now we also employ early stopping [30, 6]. That is, we stop the minimization of the training
error C(train) when the prediction error on the validation data, C(valid), starts to increase. In this way,
we prevent the model from overfitting on the training data. As in the visualization experiments, we
used a momentum term of 0.5 during the first 250 iterations, and of 0.8 afterwards. Again, we use
early exaggeration with a factor of 4 during the first 250 iterations, and we used an adaptive learning
rate scheme [18] with an initial learning rate of 1, 000. We assess the quality of the trained models by
measuring the error in the predicted word associations on the held-out test data, C(test).

In the generalization experiments, the dimensionality of the maps is typically much larger than 2.
As a result, the multiple map model is not hampered by the crowding problem, which forced us to
use heavy-tailed similarity measurements in the visualization experiments. In the generalization ex-
periments, therefore, we use the definition of pairwise similarities that is based on Shepard’s universal
law of generalization (see Equation 8), i.e., the similarity between two points in a map is exponentially
decaying with their squared Euclidean distance in the map.
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The multiple map model has two parameters which need to be set by the user: the number of maps
M and the dimensionality of the maps D. The number of degrees of freedom in the multiple map model
is equal to NMD + N(M − 1), as a result of which a model with M = 1 and D = 70 has roughly
the same number of degrees of freedom as model with M = 2 and D = 35. In experiments in which
we compared a single map model with multiple map models, therefore, we make sure that the product
of the number of maps M and the map dimensionality D is fixed. In order to determine the value of
the product MD for our experiments, we performed experiments with the single map model for a large
number of values of D (ranging from 2 to 150), and we determined the number of dimensions D∗ for
which the generalization error of the single maps is minimized. In the experiments with the multiple
map model, we set the values of M and D in such a way that the product MD is roughly equal to D∗.
Hence, we gave the single map model a major advantage: the single map model is allowed to select its
optimal number of degrees of freedom, and the comparison with the multiple map models is performed
using that number of degrees of freedom.

5.2 Results

The results of the experiments in which we ran the single map model for a wide range of values of
D (ranging from 2 to 150 with steps of 2 dimensions) revealed the single map model is best at word
association prediction when D is set to 70 dimensions. The training, test, and validation errors of the
70-dimensional single map model (M = 1) are presented in Table 1.

In Table 1, we also present the prediction errors of the training, validation, and test data obtained
after learning multiple map models (M > 1). Note that the parameters were set in such a way as to
make sure that the product MD is roughly equal to 70. The training errors presented in the table measure
how well the model represents the word associations that were used for training. The validation errors
measure the prediction error on the held-out validation set that was used for early stopping. The test
errors presented in the table measure the generalization performance of the trained models, i.e., the
ability of the model to predict word associations7. The best performance across the models on each of
the datasets is typeset in boldface.

The results reveal that, even though the single map model is best at representing the presented word
association data (i.e., it has the lowest training error), a model with two maps performs better at the
generalization task than the single map model (i.e., it has the lowest test error). The multiple map
model with 2 maps of 35 dimensions achieves an error of 0.5195, whereas a single map model with 70
dimensions achieves an error of 0.5305. These results are quite remarkable, given that (1) the multiple
map model has less space to model the word associations because volume decreases exponentially with
dimensionality and (2) the selection of the model size was performed in such a way as to favor the single
map model.

To demonstrate the advantage of having multiple maps, we also performed experiments with single
map models with 35 dimensions. The results of these experiments reveal that such a model performs
significantly worse than a model with two maps of 35 dimensions: the test error of the single map model
is 0.5916, whereas the test error of the multiple map model is only 0.5195.

Although the results of the experiments clearly demonstrate the benefits of having multiple maps,
they also reveal that for more than two maps, the exponential loss of space in the model hampers the
performance of the multiple map model. Still, a model with three maps of 22 dimensions still performs
on par with a single map model with 70 dimensions8.

6 Discussion

In the previous two sections, we presented the results of visualization and generalization experiments
that reveal the merits of multiple map SNE over single map multidimensional scaling techniques such

7Note that the prediction errors cannot be directly compared across datasets, because they are not normalized: the errors
on the training set are always higher because the training set contains more associations.

8Again, we would like to emphasize that a 70-dimensional space is much larger than a 22-dimensional space, as the volume
of a space decreases exponentially with it dimensionality.
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Number of maps Number of dimensions Training error Validation error Test error
1 35 3.8937 0.5559 0.5916
1 70 3.8289 0.5048 0.5315
2 35 3.9579 0.5032 0.5195
3 22 4.0826 0.5164 0.5338
4 17 4.2255 0.5328 0.5461
5 14 4.2894 0.5367 0.5545

Table 1: Generalization errors for single and multiple map models.

as SNE. The ability of multiple map SNE to faithfully model nonmetric similarity data may have ap-
plications in, for instance, the visualization of stimulus-response pairs resulting from psychological
or behavioral experiments, or the visualization of species co-occurence counts that are gathered by
biologists [45]. However, in this section we will focus on the potential of multiple maps SNE as a
computational model for semantic representation. We showed that the model may overcome many of
the problems of semantic space models [49, 56, 22]. Below, we compare the theoretical properties of
multiple map SNE with those of three alternative computational models for semantic representation: (1)
semantic space models, (2) semantic networks, and (3) topic models.

1) Semantic space models. Semantic space models are similar to multiple map SNE in that they
represent semantic concepts as points in a space in such a way, that similar concepts are represented
close together in the space. In other words, semantic space models are based on the idea of implementing
a second-order isomorphism between the representation space and the concepts in the world [11], which
means that words with similar semantics should have a similar representation in the space.

Traditionally, multidimensional scaling models have been the most popular semantic space mod-
els [55, 49, 44], but these models are hampered by the limitations of metric spaces that we discussed
in the introduction. For classical scaling [55], it is possible to partially overcome these problems by
exploiting the structure from the eigenvectors that correspond to the negative eigenvalues of the Gram
matrix when modeling non-metric similarities, as these eigenvectors may contain structural information
on the metricity violations in the pairwise dissimilarity matrix [24, 23]. However, such an approach is
limited for two main reasons. First, it is hard to interpret the map that corresponds to the negative part
of the eigenspectrum: the map that corresponds to the positive part of the eigenspectrum is a metric
approximation to the similarities, and the “negative map” is constructed in such a way as to correct the
errors in the “positive map”. Second, in contrast to our multiple model, approaches that employ the
negative part of the eigenspectrum can only construct two metric maps9: a positive map and a negative
map.

An alternative approach to address the limitations of metric spaces is by using an extended two-
way Euclidean model with common and specific dimensions [58]. In such a model, the dissimilar-
ity dij between two object representations yi and yj is extended with a variable si that measure the
specifity of the object with index i. The model performs standard multidimensional scaling, where
dij =

√
‖yi − yj‖2 + si + sj . The main advantage of this model over the traditional scaling models

is that it can represent data with high centrality successfully. However, the model is not capable of
representing intransitive semantic similarities faithfully.

Another alternative semantic space model, called “trajectory mapping”, aims to address the limita-
tions of low-dimensional metric spaces by constructing an object representation consists of a set of paths
(the so-called “trajectories”) through the objects that connects all objects that have a certain common
feature [37]. The main drawback of this model is that it requires the “extrapolation” of features. How
this extrapolation should be performed for semantic features remains unclear.

More recently, the Latent Semantic Analysis (LSA) model has gained popularity. LSA is a model
9We should note it is possible to consider these two maps as a hyperbolic space in which distance measures can be defined

that do not obey the triangle inequality [34].
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for semantic representation that was originally designed for use in information retrieval systems [22].
It computes a low-rank approximation of a word association or word co-occurence matrix by means of
singular value decomposition (SVD). The most important output of LSA is formed by the k principal
left-singular vectors of the low-rank approximation, where the importance of the singular vectors is
determined by their corresponding singular values. The left-singular vectors provide a spatial represen-
tation for the words in the data in an orthogonal basis spanned by k vectors, hence, they represent words
as points in the k-dimensional metric space Rk. Semantic similarity in this space is typically measured
using the cosine distance between word vectors, as a result of which semantic similarities under the LSA
model obey all metric axioms. Therefore, LSA [22] and its probabilistic counterpart pLSA [17] are not
fundamentally different from other semantic representation models that rely on second-order isomor-
phic representations. LSA is thus subject to all of the objections against multidimensional scaling that
were formulated by Tversky10 [56], as a result of which multiple map SNE has important advantages
over (probabilistic) LSA. In contrast to (probabilistic) LSA, multiple map SNE can successfully model
intransitive similarities and asymmetric similarities between semantic objects.

Other important semantic space models are models based on distributed representations that are
typically employed in connectionist models of semantic representation [29, 20, 35, 38]. Distributed
representations are fairly similar to multiple map SNE in that they allow an object to be represented by
multiple points. However, an important problem with distributed representations is that automatically
extracting a distributed semantic representation from text involves significant computational challenges,
such as deciding how many senses each word should have and when those senses are being used. Until
now, these problems have been alleviated by constructing the networks based on data that consists of
labeled pairs of words and their meanings [39]. In contrast, multiple map SNE automatically learns a
semantic representation from word associations (that can, in turn, be automatically extracted from text
corpora [26]) and infers from the data how many senses each word has. The only restriction is that the
number of senses for a single word cannot exceed the predefined number of maps, but it is unlikely that
this restriction is violated if a sensible number of maps is used. This property of multiple map SNE
gives it an important advantage over connectionist models for semantic representation.

2) Semantic networks. Semantic associative networks provide an intuitive way to model semantic
similarities, and they provide simple solutions to problems such as word prediction, word disambigua-
tion, and gist extraction [8, 7]. A semantic network consists of nodes that represent the words, and
edges that represent the semantic similarities between the two words that the edges connect. When a
word is observed, the node that corresponds to this word is activated. The resulting activation spreads
through the semantic network, thereby activating nodes that are nearby in terms of the diffusion distance
through the network. The strength of the activations in the nodes represents the semantic similarity of
their corresponding words with the observed word.

Activations in undirected semantic networks can readily be represented in a distributed semantic
representation [15, 47], and as a result, an undirected semantic network can be converted into a semantic
space model using a bijective mapping. The semantic space corresponding to an undirected semantic
network typically has a very high dimensionality, as a result of which the model has no problems with
representing ‘central’ concepts. However, undirected semantic networks cannot represent asymmetric
or intransitive semantic relations, because they obey the symmetry axiom and the triangle inequality,
respectively. The former problem can be overcome by defining semantic networks as directed graphs,
in which the weight of an edge from A to B may be different from the weight of the edge between
B and A, causing similarities in the network to become asymmetric. However, this does not resolve
problems with intransitive similarities. If node A has a strong connection to node B, and node B has
a strong connection to node C, activation from node A will spread to node C, which makes A and C
semantically related under the model. Multiple map SNE thus has significant advantages over models
based on semantic networks, in particular, because it can infer the different senses of a word from the
data. In contrast, semantic networks require manual specification of the senses11.

10We are not the first authors to note the limitations of Latent Semantic Analysis. See for a more extensive coverage of the
limitations of LSA, e.g., [14].

11Note that specifying senses may not be as trivial as it seems, as we explained in the introduction for the two senses of the
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Figure 3: Generative process of Latent Dirichlet Allocation.

3) Topic models. Recently, a family of (Bayesian) latent variable models that originates from
information retrieval has been proposed as computational models for semantic representation [14]. The
most important examples of such models are the so-called topic models. Recently proposed topic models
include Latent Dirichlet Allocation [4], the author model [27], the author-topic model [40], and the
author-topic-recipient model [28]. Because of the popularity of Latent Dirichlet Allocation (LDA), we
will focus on that model here. However, our discussion also holds for other topic models.

LDA was originally developed to model large text corpora. The key idea of LDA is that each word
x has a topic z (picked from k topics) that is drawn from a topic distribution θ that is specific for a
document. The graphical model of LDA is shown in Figure 3. The corresponding underlying generative
process is given by

• For each of the N documents in the corpus:

– Choose a topic distribution θ ∼ Dirichlet(v)

– For each of the M words in the document:

∗ Choose a topic z ∼ Multinomial(θ)
∗ Choose a word x ∼ Multinomial(βz)

The latent variables in LDA are formed by: (i) k multinomial distributions z over all words and (ii)
a distribution θ over these multinomial distributions12. The k multinomial distributions z can be viewed
upon as topics, and each topic has its own multinomial distribution over words. The variable k is a
parameter that sets the number of topics that is employed in the semantic representation. It may either
be set by the user, or it may be learned from the data using non-parametric Bayesian techniques [3, 53].

Under a topic model, two words can be viewed as semantically similar if they both have a high
probability under at least one of the k topics [14]. This provides topic models with the same desirable
properties that multiple map SNE has. In particular, a topic model is capable of modeling intransitive
semantic similarities in different topics. Analogous to our example with tie, tuxedo, and knot, in LDA,
tie and tuxedo could be given a high probability in one topic and tie and knot could be given high
probability in another topic, which would not make tuxedo similar to knot under the model. In the same
way, LDA can model central objects by giving them a high probability in a large number of topics,
which automatically gives rise to asymmetric similarities. The only requirement is that (as in multiple
map SNE) sufficient topics are available to model the required centrality. The topics in LDA can be
thought of as an equivalent for the maps in multiple map SNE.

The main difference between topic models and multiple map SNE is that, in contrast to LDA, mul-
tiple map SNE can (1) be trained directly on association or co-occurrence data and (2) capture subtle

word monarchy.
12The distribution over the multinomial distributions over all words is parametrized by means of a Dirichlet distribution,

which is the conjugate prior of the multinomial distribution, see, e.g., [13].
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semantic structure in the spatial structure of the maps. The first capability may be relevant depending
on the input data that is available. The merits of the second capability are illustrated, for instance, in
the ‘sports’ cluster in Figure 2(d), where the subtle semantic difference between physical sports such as
football, baseball, and volleybal, and mental sports such as chess, checkers, and poker is captured in the
spatial structure of the cluster (from left to right). In addition, multiple map SNE has the advantage that
it can model small semantic structures that are not closely related to other semantic structures, such as
the Popeye - spinach - cartoon cluster in Figure 2(c), without resorting to the construction of a new map
or topic.

A minor disadvantage of multiple map SNE is that it is not tailored to clustering the concepts in
the data, i.e., the concepts that have a high mixing proportion in a specific map do not necessarily
all correspond to the same topic. This behavior of the model is due to the structure of the objective
function: due to the asymmetry of the Kullback-Leibler divergence, the objective function does not
severely penalize cases in which dissimilar objects (low pj|i) both have a high mixing proportion in the
same map (high qij). In cases in which it is desirable that maps only model a single topic, it is better
to minimize the sum of the inverse Kullback-Leibler divergences

∑
i KL(Qi||Pi) instead of the sum

of the “normal” divergences
∑

i KL(Pi||Qi). However, one should note that this may have a negative
influence on the spatial layout of the maps, since in terms of spatial layout of the maps, the inverse
Kullback-Leibler divergence will focus on modeling dissimilar objects far apart (i.e., focus on global
data structure) instead of on modeling similar objects close together. We also note that clusters or topics
do not necessarily need to be “clean” in order for a model to perform well. In fact, product of expert
models outperform standard mixture topic models such as LDA, even though they do not learn very
precise topics [43].

7 Conclusions

We presented a variant of multidimensional scaling that is capable of representing input objects in a
collection of maps. The model alleviates the fundamental limitations of traditional multidimensional
scaling techniques that are due to the metric axioms that hold in semantic space models. We presented
results of visualization and generalization experiments on a dataset of word association data, revealing
that the multiple map model is capable of accurately representing and predicting central concepts, as
well as asymmetric and intransitive semantic relations. We compared the characteristics of the multiple
map model with those of other computational models for semantic representation, and argued that the
multiple map model has important advantages over popular semantic space models such as Latent Se-
mantic Analysis. In particular, the multiple map model has characteristics that are similar to those of
topic models that were recently proposed as computational models for semantic representation.
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A Gradients of the multiple map model

The multiple map SNE model minimizes the sum of Kullback-Leibler divergences between the pairwise
similarities pj|i (where pj|i ≥ 0 and

∑
j pj|i = 1) and the pairwise similarities in the multiple map with

respect to the coordinates in the map y(m)
i and the mixing proportions π

(m)
i (which are in turn defined

as a function of the mixture weights w
(m)
i ). Mathematically, the cost function is given by

C =
∑

i

KL(Pi||Qi) =
∑

i

∑
j 6=i

pj|i log
pj|i

qj|i
, (12)
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where qj|i is the weighted sum of pairwise similarities between i and j over all low-dimensional maps

qj|i =

∑
m π

(m)
i π

(m)
j exp

(
−‖y(m)

i − y(m)
j ‖2

)
∑

m′
∑

k 6=i π
(m′)
k π

(m′)
l exp

(
−‖y(m′)

i − y(m′)
k ‖2

) . (13)

In the equation, π
(m)
i is the mixing proportion of point i in map m, which is defined in terms of the

mixing weights w
(m)
i as

π
(m)
i =

e−w
(m)
i∑

m′ e−w
(m′)
i

. (14)

The gradients of the cost function C with respect to the parameters of the model are given below.
To ease up the notation of the gradients somewhat, we denote the denominators of the the definition

of qj|i in Equation 8 by Zi, i.e., we define

Zi =
∑
m′

∑
k 6=i

π
(m′)
i π

(m′)
k exp

(
−‖y(m′)

i − y(m′)
k ‖2

)
. (15)

The gradient of the cost function with respect to the low-dimensional map points y(m)
i is given by

δC

δy
(m)
i

= 2
∑

j

(
δC

δd
(m)
ij

+
δC

δd
(m)
ji

)(
y(m)

i − y(m)
j

)
, (16)

where δC

δd
(m)
ij

denotes the gradient of the cost function C with respect to the squared pairwise distance

between point yi and yj in map m (i.e., d
(m)
ij = ‖yi − yj‖2). This gradient is given by

δC

δd
(m)
ij

=
π

(m)
i π

(m)
j exp

(
−‖y(m)

i − y(m)
j ‖2

)
qj|iZi

(pj|i − qj|i). (17)

The gradient of the cost function with respect to the mixing proportions π
(m)
i is given by

δC

δw
(m)
i

= π
(m)
i

((∑
m′

π
(m′)
i

δC

δπ
(m′)
i

)
− δC

δπ
(m)
i

)
, (18)

where the gradient of the cost function with respect to the mixing proportions π
(m)
i is given by

δC

δπ
(m)
i

=
∑

j

(
1

qj|iZi
(qj|i − pj|i) +

1
qi|jZj

(qi|j − pi|j)
)

π
(m)
j exp

(
−‖y(m)

i − y(m)
j ‖2

)
. (19)
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